Meilleure preuve observationnelle de l’existence d’une première génération d’étoiles dans l’Univers

Actualité

Meilleure preuve observationnelle de l'existence d'une première génération d'étoiles dans l'Univers

Des astronomes ont découvert, au moyen du Très Grand Télescope de l’ESO, la galaxie de loin la plus lumineuse de l’Univers jeune ainsi que des preuves solides de l’existence de la première génération d’étoiles en son sein. Ces objets massifs, brillants, récemment encore considérés comme purement théoriques, sont à l’origine de la création des tous premiers éléments lourds qui entrent dans la composition des étoiles qui nous entourent aujourd’hui, de leurs cortèges de planètes et de la vie telle que nous la connaissons. La galaxie nouvellement découverte, baptisée CR7, est trois fois plus brillante que la galaxie lointaine la plus lumineuse cataloguée à ce jour.

Les astronomes ont longtemps supposé l’existence d’une première génération d’étoiles – baptisée étoiles de Population III – issues de la matière originelle créée lors du Big Bang [1]. L’ensemble des éléments chimiques plus lourds – tels l’oxygène, l’azote, le carbone et le fer, essentiels à la vie – ont été créés à l’intérieur des étoiles. Cela signifie que les premières étoiles ont dû se constituer à partir des seuls éléments antérieurs aux étoiles : l’hydrogène, l’hélium, et quelques traces de lithium.

Ces étoiles de Population III auraient été gigantesques – des centaines, voire des milliers de fois plus massives que le Soleil – brûlantes et transitoires – explosant en supernovae après seulement deux millions d’années. Mais jusqu’à présent, aucune réelle preuve matérielle n’était venue étayer l’hypothèse de leur existence [2].

Une équipe menée par David Sobral de l’Institut d’Astrophysique et des Sciences Spatiales, de l’Université de Lisbonne au Portugal, et de l’Observatoire de Leiden aux Pays-Bas, a utilisé le Très Grand Télescope (VLT) de l’ESO pour sonder l’Univers jeune et remonter à l’époque de la réionisation, soit à quelque 800 millions d’années après le Big Bang. Plutôt que d’étudier une infime portion du ciel profond, ils ont étendu leur champ d’observation et produit le sondage galactique profond le plus vaste jamais réalisé.

Cette vaste étude a été effectuée au moyen du VLT, avec l’aide de l’ Observatoire W.M. Keck et du Télescope Subaru, ainsi que du Télescope Spatial Hubble du consortium NASA/ESA. L’équipe a découvert – et confirmé – l’existence d’un certain nombre de très jeunes galaxies étonnamment brillantes. L’une d’elles, baptisée CR7 [3], constitue un objet extrêmement rare, de loin la galaxie la plus lumineuse jamais observée à ce stade de l’Univers [4]. La seule découverte de CR7 et d’autres galaxies brillantes couronnait déjà l’étude de succès. Une analyse plus approfondie est venue  compléter ce flot d’excellentes nouvelles.

Les instruments X-shooter et SINFONI qui équipent le VLT ont détecté une forte émission d’hélium ionisé à l’intérieur de CR7 mais, curieusement et fort heureusement, aucun signe de la présence d’éléments plus lourds au sein d’une portion lumineuse de la galaxie. Ainsi donc, l’équipe venait de dénicher le premier véritable indice de l’existence d’amas d’étoiles de Population III responsables de l’ionisation du gaz contenu à l’intérieur d’une galaxie de l’Univers jeune [5].

“Cette découverte a surpassé toutes nos attentes initiales” s’enthousiasme Davis Sobral. “Nous ne nous attendions effectivement pas à détecter une galaxie aussi brillante. Puis, après avoir analysé CR7 sous toutes les coutures, nous avons compris que non seulement nous avions trouvé la galaxie lointaine la plus lumineuse qui soit, mais également réalisé qu’elle présentait toutes les caractéristiques attendues d’une galaxie peuplée d’étoiles de Population III. Ces étoiles ont créé les tous premiers atomes lourds dont nous sommes aujourd’hui constitués. Quelle autre découverte plus excitante que celle-ci ?”

Au sein de CR7, des amas d’étoiles de couleur plus bleue, parfois plus rouge, ont été détectés, suggérant que les étoiles de Population III sont apparues par vagues successives – comme cela avait été prédit. L’équipe a pu directement observer la toute dernière vague d’étoiles de Population III. Ainsi donc, ces étoiles seraient plus faciles à détecter qu’on ne le pensait auparavant : elles résident parmi les étoiles ordinaires, au sein de galaxies brillantes – pas seulement au cœur des premières galaxies, de tailles réduites et de luminosités plus faibles, si faibles que leur étude s’avère extrêmement compliquée.

Jorryt Matthee, second auteur de l’étude, conclut ainsi : “Je me suis toujours interrogé sur nos origines. Enfant déjà, je cherchais à connaître la provenance de divers éléments : le calcium contenu dans mes os, le carbone dans mes muscles, le fer dans mon sang. J’ai découvert qu’ils furent pour la première fois créés au tout début de l’Univers, par la première génération d’étoiles. Cette découverte nous permet d’observer ces objets pour la toute première fois.”

Des observations complémentaires au moyen du VLT, d’ ALMA et du Télescope Spatial Hubble du consortium NASA/ESA seront prochainement effectuées, afin de lever toute incertitude concernant l’appartenance des étoiles observées à la Population III, d’en chercher et d’en identifier d’autres.

Notes

[1] Parce que les astronomes avaient déjà classé les étoiles de la Voie Lactée parmi les étoiles de Population I (tel le Soleil, riche en éléments plus lourds et situé dans le disque) et de Population II (les étoiles plus âgées contenant une plus faible proportion d’éléments lourds et situées dans le bulbe et le halo de la Voie Lactée, ainsi que les amas globulaires), ils rangèrent ces premières étoiles parmi les étoiles de Population III.

[2] La découverte de ces étoiles n’est pas chose aisée :  il semble que leurs durées de vie aient été très courtes en effet, et qu’elles aient brillé à une époque à laquelle l’Univers était particulièrement opaque à leur rayonnement. Parmi les résultats antérieurs figurent :  Nagao, et al., 2008, qui ne fait pas mention d’une quelconque détection d’hélium ionisé ; De Breuck et al., 2000, assorti d’une référence à la détection d’hélium ionisé, mais également de carbone et d’oxygène, ainsi qu’aux signatures d’un noyau actif de galaxie ; enfin, Cassata et al., 2013, qui fait mention de la détection d’hélium ionisé en de faibles proportions, aux côtés du carbone et de l’oxygène.

[3] La notation CR7 constitue une forme abrégée de l’appellation COSMOS Redshift 7, qui se réfère à la place qu’occupe cette galaxie sur l’échelle des temps cosmiques. Plus le redshift (ou décalage vers le rouge) est élevé, plus la galaxie est distante et plus l’on remonte loin dans l’histoire de l’Univers. A1689-zD1, l’une des galaxies les plus âgées jamais observées est, à titre d’exemple, caractérisée par un redshift de 7,5. Ce surnom évoque le grand footballeur portugais qu’est Cristiano Ronaldo, par ailleurs nommé CR7.

[4] CR7 est trois fois plus brillante qu’ Himiko, l’ancienne tenante du titre, dont on pensait qu’elle était unique en son genre à ce stade très jeune de l’Univers. Les galaxies poussiéreuses, à des stades bien plus sous forme de rayonnement infrarouge provenant avancés de l’histoire de l’Univers, peuvent rayonner une énergie totale plus importante que CR 7 provenant de la poussière chaude. L’énergie émise par CR7 est principalement de la lumière visible et des ultraviolets.

[5] L’équipe a examiné deux hypothèses distinctes, selon lesquelles un noyau actif de galaxie ou bien encore des étoiles de type Wolf-Rayet pourrai(en)t constituer la (ou les) source(s) du rayonnement étudié. Toutefois, l’absence d’éléments lourds, d’autres indices également, ont permis de les réfuter. L’équipe a par ailleurs considéré qu’un trou noir en cours d’effondrement – un objet typiquement exotique et purement théorique – puisse constituer la source de lumière en question. Mais l’absence d’une large raie en émission, tout comme les valeurs nettement plus élevées qu’attendu des intensités des raies d’hydrogène et d’hélium, ont fortement diminué la probabilité de cette hypothèse. Cette dernière se trouverait totalement écartée si aucune émission de rayons X n’était détectée – ce qui présuppose d’effectuer des observations complémentaires.

Ressources complémentaires

  • Ce travail de recherche a fait l’objet d’un article intitulé “ Evidence for PopIII-like stellar populations in the most luminous Lyman-α emitters at the epoch of re-ionisation: spectroscopic confirmation”, par D. Sobral, et al., à paraître dans la revue The Astrophysical Journal.
  • L’équipe est composée de David Sobral (Institut d’Astrophysique et des Sciences de l’Espace, Université de Lisbonne, Lisbonne, Portugal; Département de Physique, Faculté des Sciences, Université de Lisbonne, Lisbonne, Portugal; Observatoire de Leiden, Université de Leiden, Leiden, Pays-Bas), Jorryt Matthee (Observatoire de Leiden), Behnam Darvish (Département de Physique et d’Astronomie, Université de Californie, Riverside, Californie, Etats-Unis), Daniel Schaerer (Observatoire de Genève, Département d’Astronomie, Université de Genève, Versoix, Suisse; Centre National de la Recherche Scientifique, IRAP, Toulouse, France), Bahram Mobasher (Département de Physique et d’Astronomie, Université de Californie, Riverside, Californie, Etats-Unis), Huub J. A. Röttgering (Observatoire de Leiden), Sérgio Santos (Institut d’Astrophysique et des Sciences de l’Espace, Université de Lisbonne; Département de Physique, Université de Lisbonne, Portugal) et Shoubaneh Hemmati (Département de Physique et d’Astronomie, Université de Californie, Riverside, Californie, Etats-Unis).
  • Communiqué de Presse de l’ESO

Contact

  • Daniel Schaerer, Observatoire de Genève / IRAP : daniel.schaerer@unige.ch

Auteur : ESO

Date : 17/06/20152015/06/17

Rechercher

Direction

9, avenue du Colonel Roche
BP 44346
31028 Toulouse Cedex 4

Tel : 0561556666

Fax : 0561558692

Secrétariat Général

14, avenue Edouard Belin
31400 Toulouse

Tel : 0561332823

Fax : 0561332840

Tarbes

57, Avenue d’Azereix
BP 826
65008 Tarbes Cedex

Tel : 0562566000

Fax : 0562346763