La magnétosphère de Jupiter est-elle plus énergétique à l’ère de Juno ?


Ganymède, la seule lune magnétisée de notre système solaire, orbite profondément à l’intérieur de la magnétosphère géante de Jupiter où elle interagit avec le disque de plasma magnétisé en corotation autour de la planète, son magnétodisque. Les intensités des ions et des électrons précipitant à la surface de Ganymède dépendent notamment de la localisation de la Lune par rapport au magnétodisque jovien et de sa variabilité spatio-temporelle. Une équipe de l’Institut de recherche en astrophysique et planétologie (IRAP-OMP – CNES/CNRS/UT3) et de l’Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO) propose une quantification complète des propriétés des électrons le long de l’orbite de Ganymède à l’aide des observations de la sonde Juno. En comparant leurs résultats avec les observations et modèles basés sur Galileo, ils observent que ces deux derniers sous-estimaient les flux d’électrons (d’un facteur 2 à 9), en particulier aux hautes énergies (entre 20 keV et 2 MeV).

Ceci est réalisé en combinant les observations obtenues pendant cinq ans autour de Jupiter à partir de deux instruments à bord de Juno – l’expérience de distributions aurorales joviennes (JADE) à laquelle l’IRAP a contribué, et le détecteur de particules énergétiques de Jupiter (JEDI) – afin de construire des spectres composites des populations d’électrons et dériver leurs flux, densités et pressions omnidirectionnels.


La magnétosphère de Jupiter et ses ceintures de radiation.
Crédit : NASA/JPL, https://www.missionjuno.swri.edu/media-gallery/magnetosphere

Les chercheurs de l’IRAP rapportent ainsi que les flux omnidirectionnels moyens d’électrons sont considérablement atténués lorsqu’ils sont mesurés au-dessus ou au-dessous du magnétodisque, ainsi qu’à l’intérieur de la magnétosphère de la lune, où son champ magnétique intrinsèque fournit un blindage supplémentaire. Ils confirment que la densité totale électronique est dominée par la population thermique, alors que la pression totale est dominée par la population suprathermique.

La méthode développée au cours de leur étude est actuellement adaptée et appliquée pour caractériser les environnements électrons et ions où orbitent les autres lunes galiléennes, Europa et Callisto. Une telle caractérisation détaillée permettra de contraindre les paramètres d’entrée des simulations numériques dédiées à l’étude de la météo spatiale planétaire et des interactions lune-magnétosphère à Jupiter, ainsi que d’affiner les modèles empiriques d’environnement radiatif pour chacune d’entre elles pour les futurs missions spatiales comme la mission JUICE (Jupiter ICy moon Explorer) de l’Agence Spatiale Européenne.

Ressources complémentaires

Contacts IRAP

Plus d'actualités

Des associations minérales et organiques inédites découvertes dans le cratère Jezero sur Mars

Le rover Perseverance a mis au jour des roches sédimentaires contenant des minéraux et de la matière organique organisés en structures jamais observées auparavant sur Mars, ouvrant de nouvelles perspectives […]

Juno identifie l’empreinte aurorale manquante de la lune Callisto sur les pôles de Jupiter

Depuis Juillet 2016 ,  la mission  Juno  en orbite  autour  de Jupiter  permet  d’étudier les propriétés  et  les mécanismes  physiques  des empreintes  aurorales. Une  étude récemment  publiée  dans la  revue  Nature  Communications,  démontre qu’il  existe des  opportunités  d’identifier l’empreinte  aurorale  […]

Toulouse, capitale de l’Astronomie

Du 1er au 4 juillet 2025 s’est tenue, à l’INP-ENSEEIHT, la Semaine de l’Astrophysique Française organisée par la Société Française d’Astronomie et d’Astrophysique … avec l’aide et le soutien de […]

Rechercher