Une nouvelle molécule détectée dans un disque proto-planétaire

Comprendre la composition des disques proto-planétaires qui accompagnent systématiquement la formation des étoiles et sont les berceaux des systèmes planétaires, reste une étape clé pour élucider les mécanismes de formation des planètes.

L’observation des molécules constitue le principal moyen de contraindre les mécanismes physiques en action dans ces disques. Mais pour cela, il faut aussi comprendre l’évolution chimique de ces mêmes molécules pour interpréter correctement les observations moléculaires dans les disques. 

Parmi les molécules connues à ce jour, celles contenant du soufre restent mal comprises. CS (le mono-sulfure de carbone) a été parmi les premières molécules détectées dans les disques en 1997 (utilisant le télescope de 30-m de l’IRAM). La situation n’a changé que récemment, avec la découverte de H2CS par ALMA, et celle de H2S (une molécule clé pour le soufre) par NOEMA. 

Une équipe internationale composée de chercheurs européens et asiatiques a utilisé l’interféromètre NOEMA de l’IRAM, et en particulier sa capacité à observer de nombreuses raies moléculaires en même temps grâce à PolyFix, pour détecter la molécule CCS dans le disque entourant l’étoile triple GG Tau. Ce disque est assez massif, ce qui facilite la détection de molécules peu abondantes, comme H2S, détecté en 2018 par la même équipe.

C’est avec l’observatoire NOEMA dans les Hautes-Alpes françaises que les chercheurs ont détecté pour la première fois la molécule thioxoéthénylidène (CCS) dans un disque où se forment les planètes./ Crédits : IRAM, DiVertiCimes

L’abondance de CCS est environ 20 fois plus faible que celle de CS. La détection de cette molécule, ainsi qu’une limite sur l’abondance de OCS, renforce le problème de la compréhension de la chimie du soufre dans les disques. À ce jour, aucun modèle chimique ne permet encore de prédire correctement les abondances des molécules soufrées bien détectées (CS, H2S, H2CS et CCS) ou dont la détection est plus bruitée (SO et OCS). La détection de cette nouvelle molécule est un pas de plus vers un modèle chimique plus cohérent, ouvrant peu à peu la voie à la compréhension de la physico-chimie du plan du disque où naissent les planètes.

Ressources complémentaires

  • Publication scientifique : An unbiased NOEMA 2.6 to 4 mm survey of the GG Tau ring: First detection of CCS in a protoplanetary disk – Astronomy & Astrophysics, by N. T. Phuong, A. Dutrey, E. Chapillon, S. Guilloteau, J. Bary, T. L. Beck, A. Coutens, O. Denis-Alpizar, E. Di Folco, P. N. Diep, L. Majumdar, J.-P. Melisse, C.-W. Lee, V. Pietu, T. Stoecklin and Y.-W. Tang, https://doi.org/10.1051/0004-6361/202141881

Contact IRAP

  • Audrey Coutens, audrey.coutens@irap.omp.eu

Plus d'actualités

Découverte de séismes longue période profonds sous les volcans du Massif central

Une étude récente, publiée dans Geophysical Research Letters, révèle des signaux sismiques atypiques sous les volcans du Massif central. Ces signaux, associés à la présence active de magma en profondeur, suggèrent […]

Ganymède et Callisto : destins gelés aux origines divergentes

Deux lunes glacées de Jupiter, pourtant voisines et de tailles similaires, présentent des structures internes radicalement différentes. Une nouvelle étude suggère que cette dichotomie trouve son origine dès leur formation, […]

Mission Dawn : deux hypothèses sur l’origine de l’astéroïde Vesta

Une étude parue dans Nature Astronomy révèle deux hypothèses sur l’origine complexe et la structure de Vesta, deuxième plus grand corps de la ceinture d’astéroïdes entre Mars et Jupiter.  Vesta, deuxième […]

Rechercher