Deux jeunes chercheuses de l’IRAP participent à un concours de prévisions en météorologie de l’espace au moyen de l’apprentissage automatique

Ces dernières années, le domaine de l’intelligence artificielle (IA) s’est considérablement développé et trouve aujourd’hui une grande variété d’applications, offrant à la communauté scientifique de formidables opportunités. En particulier, l’apprentissage automatique présente un fort potentiel pour les modèles de prévision de météorologie de l’espace (1).

La NASA et la NOAA ont récemment organisé un concours de science des données baptisé MagNet (2), qui s’est déroulé sur 6 semaines pour s’achever le 12 février dernier. Il incluait une tâche de série temporelle dont l’objectif était de prédire, au moyen de données sur le vent solaire acquises en temps réel par deux satellites – le Deep Space Climate Observatory (DSCOVR) de la NOAA et l’Advanced Composition Explorer (ACE) de la NASA, l’indice perturbation-tempête (Dst) corrélé à l’intensité d’une tempête géomagnétique.

La doctorante Veronika Haberle et l’ancienne postdoc Anna Kotova du groupe PEPS de l’IRAP ont participé au concours. L’équipe de Veronika a obtenu la 41ème place et celle d’Anna la 11ème place (sur 622 participants). « Nous tenons à souligner que l’ingénierie des fonctionnalités a été la clé pour atteindre les premières places du classement ». Une brève description, le code de l’équipe d’Anna ainsi que les résultats obtenus sont disponibles sur GitHub (3).

« Pour nous, ce concours fut une excellente occasion de nous initier à l’apprentissage automatique et à l’application des algorithmes à la physique spatiale. Nous recommandons à tous ceux qui souhaitent s’initier en douceur à l’IA et à ses différents champs d’application de participer aux concours à venir ».

Notes

(1) Pour un examen de ce sujet, le lecteur intéressé est invité à consulter The Challenge of Machine Learning in Space Weather: Nowcasting and Forecasting from E. Camporeale, 2019.

(2) https://www.drivendata.org/competitions/73/noaa-magnetic-forecasting/page/278/

(3) https://github.com/olegpolivin/MagNet-Model-the-Geomagnetic-Field

Contacts IRAP

  • Veronika Haberle, Veronika.Haberle@irap.omp.eu
  • Anna Kotova, molnia555@gmail.com

Plus d'actualités

Première détection de décharges électriques sur Mars

Des décharges électriques ont été enregistrées au sein des tempêtes et des tourbillons de poussière – les dust devils – qui parcourent la surface de Mars. Captés de manière inédite […]

MACIV-nodes : un réseau sismologique exceptionnel sur les volcans du Massif Central

Dans le cadre du projet MACIV, financé par l’Agence nationale de la recherche (ANR), une équipe de scientifiques a déployé en septembre 2025 le plus vaste réseau sismologique mobile jamais installé par […]

L’analyse de la propagation en surface du séisme de Mandalay en 2025 rendu possible grâce à une seule caméra de vidéosurveillance !

Une équipe de scientifiques de plusieurs laboratoires du CNRS vient de réaliser une analyse précise de la source du séisme de Mandalay du 28 mars 2025 (Mw 7,7) grâce à […]

Rechercher