The origin of the Betelgeuse stellar wind revealed by the first 3D images

Except for the lightest elements (H, He and Li), atoms are formed inside the stars, throughout its life, by nuclear reactions. But they need to escape. Among the most efficient escape mechanisms, there is the stellar wind and, in particular, that of the red supergiants. At the end of their life, these stars blow an intense and almost continuous stream of atoms of all kinds. But what is the origin of this stellar wind?

At the top of the Pic du Midi, southern France, the Bernard Lyot Telescope (TBL) studies Betelgeuse, the closest red supergiant to Earth. Recently, a new indirect imaging technique, based on the use of the polarization of the emitted light, has been developed. If, at first, only two-dimensional images were obtained, the technique has been improved and now produces three-dimensional images. The heated plasma inside the star can be seen rising towards the surface where it cools down. Heavier because colder, it should then fall back towards the interior of the star where it would be heated again in a convective cycle. But what we see on the 3D images of Betelgeuse is slightly different. The plasma does not always fall back but continues to rise at almost constant speed. A still unidentified force pushes this plasma and allows it to escape from the star. This force is the reason for the powerful stellar wind of Betelgeuse. It is the reason for the stardust that will one day form planets and perhaps life around another star.

3D images of the Betelgeuse photosphere on December 20, 2013

This work is the result of six years of polarimetric measurements of Betelgeuse with the Narval and Neo-Narval instruments built by OMP and installed on the Bernard Lyot Telescope at the Pic du Midi. The observations and data analysis were performed by a team of researchers from OMP – IRAP and the University of Montpellier.

Further Resource

  • Scientific paper : Three-dimensional imaging of convective cells in the photosphere of Betelgeuse? – Astronomy & Astrophysics by A. López Ariste, S. Georgiev, Ph. Mathias, A. Lèbre, M. Wavasseur, E. Josselin, R. Konstantinova-Antova et Th. Roudier, https://doi.org/10.1051/0004-6361/202142271

IRAP Contacts

  • Arturo Lopez Ariste, Arturo.Lopezariste@irap.omp.eu,
  • Thierry Roudier, thierry.roudier@irap.omp.eu

More news

News

SEIS instrument can both locate meteorite impacts and scan the interior of Mars

Launched by NASA in May 2018, the InSight mission aims to study the internal structure of the planet Mars. Its SEIS seismometer, for which ISAE-SUPAERO produced, under the supervision of […]

21.09.2022

News

James Webb Telescope: first images of the Orion Nebula

An international research team has just revealed the first images of the Orion Nebula, the richest and closest nursery of stars to the Solar System, captured by the James Webb […]

13.09.2022

News

Planet Mars: first geological surprises for the Perseverance rover in the Jezero crater

On February 21, 2021, NASA’s Perseverance rover landed on Mars in the Jezero crater. In October (1), the rover confirmed the interest of its landing site: the Jezero crater was […]

02.09.2022

Search