A new way to understand plate tectonics: olivine glass

The separation between the rigid lithosphere and the ductile asthenosphere is a major mechanical discontinuity of the globe. This boundary is characterized by a five-order drop in viscosity generally associated with the temperature range 1300-1400 K. It is the key to the mechanical coupling between the underlying asthenospheric convection and the horizontal movements of the lithospheric plates, yet its origin is still uncertain. A new study, carried out within the framework of the ERC TimeMan, addresses this question from the perspective of the mechanical properties of olivine, the most abundant mineral in the lithospheric mantle.

Film of olivine glass between two grains of olivine after deformation at 1200 °C, 300 MPa. © V. Samae

Although olivine is the subject of many studies, the way in which this mineral can be deformed in nature is still poorly understood. Indeed, the crystallographic structure of olivine does not allow the activation of sufficient intracrystalline deformation mechanisms to allow the deformation of a rock without inducing damage and causing breakage. Recent studies suggest that the deformation may be concentrated at the boundaries between the olivine grains but without clearly establishing the mechanisms involved. In this study published in Nature, scientists conducted extensive transmission electron microscopy investigations of deformed samples under high stress. They observed that under these conditions of high pressure and temperature, the walls between the grains present a thin vitrified layer resulting from the mechanical collapse of the crystalline structure of olivine.

Transmission electron microscopy images. a) Deformed sample at 1200°C, 300 MPa in Paterson press. b) Deformed sample at 1000°C, 5 GPa in multiclick press. © V. Samae

This observation sheds new light on the mechanical properties of rock, because glass has very specific mechanical properties, in particular a sudden drop in viscosity near a characteristic temperature called the glass transition temperature. The authors therefore propose that the softening of this thin intergranular layer would be the trigger of the mechanical transition between the lithosphere and the asthenosphere.

Further Resources

  • Scientific article : Stress-induced amorphization triggers deformation in the lithospheric mantle Nature 591, pages 82–86 (2021) – Vahid Samae, Patrick Cordier, Sylvie Demouchy, Caroline Bollinger, Julien Gasc, Sanae Koizumi, Alexandre Mussi, Dominique Schryvers & Hosni Idrissi. DOI : https://doi.org/10.1038/s41586-021-03238-3

IRAP Contact

  • Caroline Bollinger, caroline.bollinger@irap.omp.eu

More news

New clues to mysterious radio signals from deep space

Thanks to two NASA X-ray telescopes, an international team of scientists involving the Toulouse-based Institut de Recherche en Astrophysique et Planétologie (IRAP/OMP – CNES/CNRS/UT3) has been able to observe a […]

DORN instrument heads for the Moon

The DORN (Detection of Outgassing RadoN) instrument, dedicated to measuring radon on the Moon’s surface, was developed at IRAP-OMP. It will be on board China’s Chang’E6 lunar mission, scheduled for […]

Final months for the Cluster mission, after 24 years of success in space

After 24 years of space operations, during which they have greatly advanced our understanding of the dynamics of the Earth’s magnetosphere and its interaction with the solar wind, the first […]