DENSE PLASMAS: SIMULATIONS AND EXPERIMENTS
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Simulations

Experiments

Overview

Comparison with EOS
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The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus completely known,
and the difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble. Dirac, 1929



[. Simulaftions
Even for H or He: non zero temperature quantum effect impossible to solve

Three main numerical method developped in the XXth century:

Path Integral Monte Carlo Quantum Monte Carlo Density Functional Theory
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[. Simulations
Path Integral Monte Carlo (or Path Integral Molecular Dynamics) evaluate ion

and electron motion (at the expense of numerical cost)

QMC and DFT solve the electronic problem but must be coupled to an
evolution for the ions (most of the time, classical molecular dynamics)

| will not detaill QMC, based on trial wave functions to optimize the energy.
See McMahon et al. 2012
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. Simulations /43
PIMC

Objective: calculate the partition function
Z = Tr(e BH)

With g = LT and H the Hamiltonian, e~ is the density matrix

kp
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[. Simulations

PIMC
Why Z ¢

In the canonical ensemble: F = —kgTInZ

V,N
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[. Simulations

PIMC
Hypotheses: H =T + V', kinetic + potential

L1
—~ ZiZj
o 2my i<j |7y =77

Potential operator only depend on position
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[. Simulations

PIMC
Rewriting: Z = Tr(e=FH), o = e~PH with the Hamiltonian eigenfunctions:

o(R,R'; f) =< R|e PH|R" > = Z¢i*(R)¢i(R,)8_BEi

7 = jg(R,R;ﬁ)dR

R: positions of the ensemble of particles
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[. Simulations
PIMC

Basics of PIMC :
e~ (B1+B2)H — o—B1H,—p2H

Denoting t = % e PH = (e~TH)M
0(Ro, Ryi; B) = fQ(Ro» Ry;7) .. 0(Ry—1, Ry T)ARy ... dRy—4
Z = 0(Ro, Ro; B)
. does not depend on the path (RO-> RO). MCMC sampling of the possible

paths to evaluate the integral. Why is that better than just calculating integral?
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[. Simulations

PIMC
Simplified expression for the density matrix at high temperature
e~ Tl =TV — e—T(T+V)+T72[T,V] o o~ T(T+V)

And there is no build up second order error (Trotter 1959):

e—,[i’(T+V) — lim [e—TTe—TV]M

At high temperature, decouple kinetic and potential energies
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. Simulations

PIMC
General form of PIMC (from Ceperley 1995):
M
0(Ro, Ry; B) = fexp (‘ z Sm) dRy ...dRy 4
m=1

S is the action.

With Trotter, we impose the primitive approximation (commutation of kinetic and potential
action):

M
Rp—1 — Rp)?
0(Ro, Ry; B) = f exp (— 2( = ZM m) +TV(Rm)) (4mAT)3VM/2 4R, ...dRy_4
m=1
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. Simulations
PIMC

M
Ry—1 — R.p)?
0(Ro, Ru; B) = JeXp (— Z (R il-ﬂ.’[ m) +TV(Rm)> (4mAT)3NM/2 R, .. dRy_1
m=1

Classical analogy:

Kinetic action is a string potential between the same atom at different time
slice => polymers.

Potential action is a repulsion potential between polymer at the same time

Z = 0(Ry, Ry; B) : ring polymers !
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. Simulations 14/43
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[. Simulations
PIMC

The partition function is the same in quantum
Pl and classical analogy: PIMC samples

the possible paths, and consider it as @
classical thermodynamical system.

Real difficulty: good strategy for MCMC
acceptable sampling of the path.
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[. Simulations
PIMC

Uncer certain approximations (free energy Born-Oppenheimer approximation,
Feynman and Hibbs 1965, Cao and Berne 1993):

7 = %Dﬁexp[— joﬁ de(T (}_?)(t)) + F (R(1))]

We recover the ion-electron separation: electron free energy can be
calculated with DFT of QMD, and ion movements with PIMC
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[. Simulations
DFT

Hohenberg-Kohn theorems:

There is a one to one correspondance between the external potential
(from the nuclei) and the ground-state electronic density.

There exists a universal energy functional of the density, defined for any
potential, such that the global minima of this functional represents the
ground-state energy of the system.
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. Simulations

DFT

Obvious problem: functional not known. Most used simplification: Kohn and
Sham 1965:

N —_— SN
1 = - - - - 1 n(r)n(r’) - —
Egs(n) = _52|v§0i(r)|2 + j Vext GIN(@)d>7 + Ej |_, —,>| d*7d°r" + Exy + Exc(n)
. r—r
=1

E,. accounts for exchange and correlation: unknown
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[. Simulations

DFT
Some ways to corect for finite temperature (Mermin 1965).

What is Exc ¢
Answer: fitted with experiments and situation

For dense hydrogen, most used is the Perdew-Burke-Ernzerhof (Perdew, Burke
and Ernzerhof 1996).
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. Simulations
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FIG. 12 (color online). Pressure vs temperature along the
Hugoniot. Comparison among experimental data and various theo-
retical predictions. Experiments: gas-gun [shaded circles (Holmes,
Ross, and Nellis, 1995)], Nova laser [diamonds (Collins, Celliers
et al., 2001)], Z pinch [squares (Bailey et al., 2008)]. Theory:
RPIMC [closed circles (Militzer and Ceperley, 2000), light shaded
circles (Khairallah, Shumway, and Draeger, 2011)], BOMD ([left
triangle (Desjarlais, 2003), up triangle (Bonev, Militzer, and Galli,
2004), line (Caillabet, Mazevet, and Loubeyre, 2011)], direct PIMC
[down triangle (Filinov ef al., 2005)] and WPMD [right triangle
(Knaup et al., 2003)].
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Some results

Precise knowledge
of Jupiter requires
errors

< 1%(Stevenson
2010)
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FIG. 13 (color online). Comparison among various theoretical
methods of computations of the principal Hugoniot for deuterium.
RPIMC (dark closed circles) (Militzer and Ceperley, 2000), (light
closed circles) (Khairallah, Shumway, and Draeger, 2011) and direct
PIMC (down triangles) (Filinov et al., 2005). FPMD ground-state
electrons (double dot-dashed line) (Lenosky er al., 2000), (closed
squares) (Bonev, Militzer, and Galli, 2004b) and thermal electrons
(dashed line) (Holst, Redmer, and Desjarlais, 2008), (continuous
line) (Desjarlais, 2003; Caillabet, Mazevet, and Loubeyre, 2011)
and (open squares) (Morales et al., 2012). WPMD (right triangle)
(Knaup et al., 2003).
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[. Simulations

Morales et al. 2009:
EOS based on QMD
Difference with DFT
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. Simulations

Numerical first order

PPT 2
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. Simulations

23/43

Some results

H-He immiscibility:
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[. Simulations

Militzer & Hubbard 2013:
Non ideal H-He mixing

Finite size effects ¢
220H - 18 He

06/01/2021

Some results
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Il. Experiments

Goal: reliable estimates of thermodynamic quantities of compressed H / He

Metallic hydrogen: the « holy grail » of high pressure research
Verification of guantum mechanics
Verity numerical simulations for other material
Most abundant element (+ giant planets and stars)
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Il. Experiments

Two main methods: static / dynamic compression

Difficulty: diffusivitiy of hydrogen, breaks the setup and explodes ...

Not my field of expertise ..

Extended review by Nellis 2006. See also Mcmahon et al. 2012,
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ll. Experiments

Static compression:
diamond anvil cell.

Dynamic compression:.
laser shock, gun gas

2012

Both static and dynamic
limits pushed further

06/01/2021
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Il. Experiments

Difficulty with experiments: metallic H becomes very reflective. Complicates
measurements

Problem: lotfs of claims, lots of debate.

Phase diagram unknown: we don't know when metallisation occurs

06/01/2021
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Il. Experiments

Top
Diamond

Reflectance measure
from DAC

Questions: impact of

Bottom

other elements ¢ Diamond

Zaghoo et al. 2016
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Il. Experiments 30/43

Conductivity measurements after
« gun gas » shock

Liquid hydrogen

Metal impactor [ | \‘Ié Triggey P
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—L. / ey Barrel Varget |1 M | 00 ...
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Il. Experiments 31/43
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Il. Experiments 32/43

New method since ~ 2012: pre compressed dynamical compression

a) Diamond plate Quartz reference plate Diamond or
100-650 pm Sapphlre anvil
\ 50-150 um -
\, VISAR
6 kJ laser
800 um spot \
CH Sample atp Sample atpg

b)
Brygoo et al. 2015
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ll. Experiments

Results:

06/01/2021
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Jupiter isentrope is
obtained if the
precompression is
about 7 GPa.
Coming soon.
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ll. Experiments

Summary: Goncharov 2020
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FIG. 1. Phase diagram of hydrogen at high pressures and various tempera-
tures. The solid dark blue lines are the phase lines between the solid molecular
phases and the melt line from Refs. 33-35 and the dashed line is the extrapola-
tion of the melt line to higher pressures. An alternative and substantially different
set of measurements of the melt line by Zha et al.” is depicted by open green
circles and solid green lines. A solid Pink square corresponds to an IR bandgap
closure reported by Loubeyre et al.”" A vertical dashed pink line is a proposed
associated phase line between a semiconducting and semi(metallic) molecular
phase also probed via the electrical conductivity by Eremets et al.”* A hypo-
thetic transition to an atomic metallic phase is shown by an orange box. At
higher pressure theory predicts an atomic metallic phase with a declining melt
line shown by a solid blue line.”” At high temperature, the experiments and
theory show two almost parallel boundaries corresponding to a transition into a
semiconducting state (dashed blue line) and insulator-metal transition (solid red
line). These have been measured by direct and indirect DAC and dynamic com-
pression techniques.”~"* Green symbols correspond to the DAC reflectance
measurements in a pulsed laser-heated DAC,”**" which disagree with other
DAC pulsed laser heating reflectance experiments shown by open orange
circles.”” Open black squares are from laser shocks,”” open pink circles are
from laser-driven ramp compression,”* and grey diamonds are the Z-machine
dynamic data,”’ which were temperature corrected in Ref. 42.
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[} T
Il. Experiments

Globally: we are getting to the conditons of giant planets
Lots of debate in the community, no consensus

Precompressed dynamic observations are the most
promising avenue today
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lll. Comparison with EOS

Known for 10 years: SCvH is no more accepted
First big improvement: MH13, non ideal H-He effects.

Improvement of the ionisation of H + gathering of
simulations: Chabrier, Mazevet and Soubiran 2019.
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lll. Comparison with EOS

Fits well the most recent
experimental data on H
and D

Almost at Jupiter’s external
isentrope
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lll. Comparison with EOS 39/43

I
b K

40 18000

$=80000 K
BE i
Works also very well with He - 1=2000 K
BUT — 20
*5
=
not with H-He ~,
Z
™~
-
0
Y=0.245 |
o MHI13
present
l my SCvH |
2 4 6 8 10

06/01/2021



Astroplasma - Dense plasmas 2 - Simulations and experiments

lll. Comparison with EOS

ldea from Miguel et al. 2016:
Non ideal terms included in a « pseudo » H EOS

Additive volume law, not valid in the non ideal case, states:

1 X Y
— = + and S=XSH+YSH3+SmiX
© O OQHe
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lll. Comparison with EOS

Assume that our He EQOS is perfect, and that non ideal terms can be
incorporated in a modified H EOS.

We just need to fit our new H EOS to recover the simulation results (MH13)
under the additive volume law:

1 1 1 YMH13
— ( — ) and SH,new — )(—(SMH13 - YMHlBSHe o Smix)

OHd new XmH13 \OMH13 OHe MH13
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lll. Comparison with EOS “2/43
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Conclusions

Simulations: QMD, DFT, PIMC

Improvements allows comparison, no consensus yet but getting to it.
Prediction of metallisation, immiscibility

Experiments: dynamic, static, precompressed dynamic
Next generation representative of Jupiter. No mixture yet

EOS: knowledge of the behaviour of H-He allows predictions for giant
planets.and brown dwarves, although improvements still needed
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Thank you |



