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Tutorial outline

e Context
e Short and easy (3h)

e Setting the theory stage Tod VY,
« Not too long and straightforward (4h)

e Small scale MHD dynamos
* Long and difficult (6h)

* Large-scale MHD dynamos




What is dynamo theory about ?

* The origin, and sustainment, of magnetic fields in the universe
* on the Earth, other planets and their satellites (“planetary magnetism”)
* in the Sun and other stars (“stellar magnetism”)

* in galaxies, clusters and the early universe (“cosmic magnetism”)

* Understanding their structural, statistical, and dynamical properties




The tluid/plasma dynamo conundrum

 Most astrophysical bodies, and many planetary interiors, are
e in an electrically conducting fluid (MHD) or weakly-collisional plasma state
e in a turbulent state

 (differentially) rotating: shearing, Coriolis and precessing effects

 Main questions




A touch of history

e Self-exciting fluid dynamos are now a century-old idea

e Firstinvoked by Larmor in 1919 (sunspot magnetism)

e The idea took a lot of time to gain ground
e Cowling’s antidynamo theorem (1933)
e First examples in the 1950s (e.g. Herzenberg dynamo)

« Parker’s solar dynamo phenomenology (1955)

» Golden age of mathematical theory |



Solar magnetism
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Global solar cycle dynamics
~ 1G-a few kG (sunspots)

Small-scale surface dynamics
~ up to kG



Planetary magnetism

[Swarm/ESA] [HST/NASA]

Earth’s magnetic field (2014) ~ 10-50 G

(0.1-0.5 G at the surface) Jupiter Auroras



Galactic magnetism
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Galactic magnetic field ~ 10 pG

M51 magnetic field

[Beck et al. VLA/Effelsberg]



Galaxy clusters and cosmic magnetism
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Takeaway phenomenological points

 Many astrophysical objects have global, ordered fields
e Differential rotation, global symmetries and geometry important
e Coherent structures and MHD instabilities may also be very important

e Motivation for the development of “large-scale” dynamo theories

e | ots of “small-scale”, random fields also discovered from the 70s







Mathematical formulation

» Compressible, viscous, resistive MHD equations
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Magnetic field energetics

 Magnetic energy equation
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Minus the work of the
Lorentz force on the flow

Poynting flux Ohmic dissipation
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Conservation laws in ideal MHD

o Altvén’s theorem(s)

 Magnetic field lines are “frozen into” the fluid just as material lines
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 Magnetic flux through material surfaces is conserved
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 Magnetic helicity H,,, = /A-BdSr conservation

* A measure of magnetic linkage / knottedness
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Astroplasma, November 2020



Simple MHD system for dynamo theory

e I[ncompressible, resistive, viscous MHD

e Captures a great deal of the dynamo problem

Magnetic tension

au Fu-Vu=-VP+B:-VB+rvAu+f(x,t

ot

Induction/stretching B
u-VB =B-Vu+nAB

b H | - &)




Scales and dimensionless numbers

e System/integral scale £o, Uog

e Fluid system with two dissipation channels

e Dimensionless numbers:

T

Re Rm — folo

U
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The magnetic Prandtl number landscape

s VWide range of Bmiin nailne 1/
* Liguid metals have Pm << 1 o
Rm
e Computers have Pm ~ O(1 10251 Clusters ?
Galaxies, ISM

e For a collisional hydrogen
plasma [Te=Tiin K, nin S.1.

Simulations
Plasma exp.




arge magnetic Prandtl numbers

e Pm > 1: resistive cut-off scale is smaller than viscous scale

* |n Kolmogorov turbulence, rate of strain goes as £-2/3
 \/iscous eddies are the fastest at stretching B: uy/ &y ~ Re12 Ug/ Lo

» To estimate the resistive scale £, balance stretching by these
eddies ~ uy/Ay with ohmic diffusion rate n/€,2

~ Pm._l/Zﬁ




Low magnetic Prandtl numbers

* Pm < 1: resistive cut-off falls in the turbulent inertial range

* To estimate the resistive scale £, balance magnetic stretching by the
eddies at the same scale ~ unly, with diffusion n/£2

s e Bmi(lu= Ullbaln =

577 o Pm_3/4€,, e.g. stellar, solar,
liquid metals (Earth, experiments)




Dynamo fundamentals

* The problem of exciting a dynamo is an instability problem
Lol

N

)

» Growth requires stretching to overcome diffusion (measured by Rm =

: : 0B
e Kinematic dynamo problem: - Tu:-VB=B:Vu+nAB

* Find exponentially growing solutions of the linear induction equation
(velocity field is prescribed)




Cowling’s antidynamo theorem

e Axisymmetric dynamo action is Impossible [Cowling, MNRAS, 1933

* |n polar geometry, write A Aez |

Poloidal Toroidal

e B_N - e ) Lube,

= U= +rl)e,




Antidynamo theorems and their implications

 Many other antidynamo results can be proven

* Plane two-dimensional motions cannot sustain a dynamo
[Zel'dovich’s theorem, JETP 1957]

* A purely toroidal flow cannot sustain a dynamo

« B(z,y,t) cannot be a dynamo field




The fast dynamo paradigm

[Vainshtein & Zel’dovich, SPU, 1972]

» Chaotic stretching, twisting, folding and merging of field lines

* For small diffusion, field doubles at each “iteration” (characteristic time)

* Exponential growth with “ideal” growth rate ~,, = In 2 ~ stretching rate




An impertect dichotomy

e Large-scale dynamo effect
* Magnetic field generated on
. long system time (Q~!, S™1), spatial scales (L) much larger than flow scales £o

* also lots of magnetic fluctuations on low and sub flow scales down to the magnetic resistive scale

e Small-scale dynamo effect

* Magnetic field generated on short time (£/u), spatial scales (£) from flow scales down to the resistive scale

 Each of these can be excited by laminar or turbulent flows




