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Tutorial outline
• Context 

• Short and easy (3h) 

• Setting the theory stage 
• Not too long and straightforward (4h) 

• Small scale MHD dynamos  
• Long and difficult (6h) 

• Large-scale MHD dynamos  
• Just a tad shorter, a bit less difficult (4h) 

• Connections between large & small-scale dynamos 
• Short and controversial, also difficult (2h) 

• Instability-driven MHD dynamos 
• Short and seemingly easier, but actually differently difficult (3h) 

• Collisionless plasma dynamo 
• Short and a bit crazy, and even more difficult (4h)
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What is dynamo theory about ?
• The origin, and sustainment, of magnetic fields in the universe 

• on the Earth, other planets and their satellites (“planetary magnetism”) 

• in the Sun and other stars (“stellar magnetism”) 

• in galaxies, clusters and the early universe (“cosmic magnetism”) 

• Understanding their structural, statistical, and dynamical properties 

• Addressing important physics (and maths) problems 
• Deep connections with hydrodynamic turbulence and more generally                  

(turbulent) transport problems 

• Coming up with “useful stuff” for experimentalists and observers 
• Warning: people strongly disagree on the definition of “useful stuff” 

3



Astroplasma, November 2020

The fluid/plasma dynamo conundrum 
• Most astrophysical bodies, and many planetary interiors, are  

• in an electrically conducting fluid (MHD) or weakly-collisional plasma state  

• in a turbulent state 

• (differentially) rotating: shearing, Coriolis and precessing effects 

• Main questions 
• Can flows of electrically conducting fluid/plasma amplify magnetic fields ? 

• What are at the time and spatial scales on which this happens ? 

• At what amplitude do they saturate ? What field structure is produced ? 

• A complex and multifaceted problem 
• Requires observations, phenomenology, theory, numerics and experiments
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A touch of history
• Self-exciting fluid dynamos are now a century-old idea 

• First invoked by Larmor in 1919 (sunspot magnetism)  

• The idea took a lot of time to gain ground 
• Cowling’s antidynamo theorem (1933) 
• First examples in the 1950s (e.g. Herzenberg dynamo) 
• Parker’s solar dynamo phenomenology (1955)  

• Golden age of mathematical theory 
• Alpha effect / mean-field: Steenbeck, Krause, Raedler 1966, Moffatt, Roberts etc. (1970s) 
• Small-scale dynamo theory: Kazantsev 1967, Kraichnan, Zel’dovich et al. (70s-80s) 

• Numerical and experimental era 
• Numerical evidence of turbulent dynamos: Meneguzzi et al. 1981, flourishing since then 
• Experimental evidence: Riga, Karlsruhe (~2000), VKS (2007), plasma underway (2005+) 
• Great observational radio and spectro-polarimetric prospects too (stellar, galactic, cosmo)
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Solar magnetism

6 [Credits: Hinode/JAXA]

[Credits: SOHO/NASA]

Global solar cycle dynamics 
~ 1G-a few kG (sunspots)

Small-scale surface dynamics 
~ up to kG
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Planetary magnetism
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[HST/NASA][Swarm/ESA]

Earth’s magnetic field (2014) ~ 10-50 G 
(0.1-0.5 G at the surface) Jupiter Auroras
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Galactic magnetism

8 [Beck et al. VLA/Effelsberg]

M51 magnetic field

[Planck/ESA]

Galactic magnetic field ~ 10 μG



Galaxy clusters and cosmic magnetism
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Takeaway phenomenological points
• Many astrophysical objects have global, ordered fields 

• Differential rotation, global symmetries and geometry important 

• Coherent structures and MHD instabilities may also be very important 

• Motivation for the development of “large-scale” dynamo theories 

• Lots of “small-scale”, random fields also discovered from the 70s 
• These come hand in hand with global magnetism 

• Simultaneous development of “small-scale dynamo” theory  

• Astrophysical magnetism is in a nonlinear, saturated state  
• Linear theory likely not the whole story (or requires non-trivial justification) 

• Multiple scale interactions expected to be important
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Mathematical formulation
• Compressible, viscous, resistive MHD equations
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Magnetic field energetics
• Magnetic energy equation 

• Magnetic field is generated at the expense of kinetic energy 

• Simple but enlightening local equation (ideal MHD)
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Conservation laws in ideal MHD
• Alfvén’s theorem(s) 

• Magnetic field lines are “frozen into” the fluid  just as material lines 

• Magnetic flux through material surfaces is conserved 

• Magnetic helicity                              conservation 
• A measure of magnetic linkage / knottedness
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Simple MHD system for dynamo theory
• Incompressible, resistive, viscous MHD 

• Captures a great deal of the dynamo problem 

• Often paired with simple periodic boundary conditions 
• Can be problematic in some cases (more later)
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Scales and dimensionless numbers
• System/integral scale  ℓ0, U0 
• Fluid system with two dissipation channels 

• Dimensionless numbers: 

• Kolmogorov viscous scale  ℓν  ~ Re-3/4  ℓ0 , uν  ~ Re-1/4  U0 

• Magnetic resistive scale  ℓη  (Pm-dependent) 

• Another important dimensionless quantity 

• Eddy turnover time 𝜏NL ~ ℓu/u 

• Flow/eddy correlation time 𝜏c
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The magnetic Prandtl number landscape
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• Wide range of Pm in nature 
• Liquid metals have Pm << 1 

• Computers have Pm ~ O(1) 

• For a collisional hydrogen 
plasma [Te=Ti in K, n in S.I.] 

• Pm<1 and Pm>1 seemingly 
very different situations 

• Naively, Pm>1 makes                                                                         
life easier for magnetic fields
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Large magnetic Prandtl numbers 
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• Pm > 1: resistive cut-off scale is smaller than viscous scale 
• In Kolmogorov turbulence, rate of strain goes as ℓ-2/3 

• Viscous eddies are the fastest at stretching B: uν / ℓν ~ Re1/2  U0 / ℓ0 

• To estimate the resistive scale ℓη, balance stretching by these                             
eddies ~ uν/ℓν with ohmic diffusion rate η/ℓη2
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Low magnetic Prandtl numbers
• Pm < 1: resistive cut-off falls in the turbulent inertial range 

• To estimate the resistive scale ℓη, balance magnetic stretching by the          
eddies at the same scale ~ uη/ℓη, with diffusion η/ℓη2  

• i.e., Rm (ℓη) = u(ℓη) ℓη / η ~ 1 
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Dynamo fundamentals
• The problem of exciting a dynamo is an instability problem 

• Growth requires stretching to overcome diffusion (measured by                    )  

• Kinematic dynamo problem: 
• Find exponentially growing solutions of the linear induction equation                      

(velocity field is prescribed) 

• Dynamical problem considers effects of Lorentz force on  
• Saturated state of kinematic dynamos: non-linear magnetic back reaction 

• Subcritical scenarios: e.g. joint excitation of u and B via MHD instabilities 

• Slow vs Fast 
• A dynamo is slow/fast if its growth rate does/doesn’t vanish as 
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Cowling’s antidynamo theorem
• Axisymmetric dynamo action is impossible [Cowling, MNRAS, 1933] 

• In polar geometry, write 

•   

•   

• Poloidal flow can only redistribute flux so    must decay ultimately 

• As     decays, so must the toroidal field 

• Note: only applies if u and B share the same symmetry axis
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Antidynamo theorems and their implications

• Many other antidynamo results can be proven 

• Plane two-dimensional motions cannot sustain a dynamo                                        
[Zel’dovich’s theorem, JETP 1957] 

• A purely toroidal flow cannot sustain a dynamo 

•                  cannot be a dynamo field 

• Dynamos are only possible in “complex” geometries or flows 

• An extra burden for both theory and numerics 

• A popular “minimal” configuration is 2.5D (or 2D-3C) 

•              with all three components non-vanishing 

•
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The fast dynamo paradigm
• Chaotic stretching, twisting, folding and merging of field lines 

• For small diffusion, field doubles at each “iteration” (characteristic time) 
• Exponential growth with “ideal” growth rate                  ~ stretching rate
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An imperfect dichotomy
• Large-scale dynamo effect 

• Magnetic field generated on  

• long system time ( ), spatial scales (L) much larger than flow scales ℓ0 

• also lots of magnetic fluctuations on low and sub flow scales down to the magnetic resistive scale 

• Small-scale dynamo effect 
• Magnetic field generated on short time (ℓ/u), spatial scales (ℓ)  from flow scales down to the resistive scale 

• Each of these can be excited by laminar or turbulent flows 

• They have traditionally mostly been described by different theories  
• in all MHD astrophysical settings, large-scale dynamos are swamped by small-scale ones 

• this creates a lot of theoretical difficulties 

• MHD instabilities also play a key role in large-scale dynamos 
• the magneto-rotational, and other magnetoshear instabilities 

• Kelvin-Helmholtz instability coupled to magnetic buoyancy

Ω−1, S−1
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