Introduction to MHD dynamos

François Rincon

Bed time reading:

J. Plasma Phys. (Lecture Notes Series) 85,

Dynamo theories 205850401 (2019) arXiv:1903.07829

Tutorial outline

- Context
 - Short and easy (3h)
- Setting the theory stage
 - Not too long and straightforward (4h)
- Small scale MHD dynamos
 - Long and difficult (6h)
- Large-scale MHD dynamos
 - Just a tad shorter, a bit less difficult (4h)
- Connections between large & small-scale dynamos
 - Short and controversial, also difficult (2h)
- Instability-driven MHD dynamos
 - Short and seemingly easier, but actually differently difficult (3h)
- Collisionless plasma dynamo
 - Short and a bit crazy, and even more difficult (4h)

Today

Second session (February, or whenever you want)

What is dynamo theory about ?

- The origin, and sustainment, of magnetic fields in the universe
 - on the Earth, other planets and their satellites ("planetary magnetism")
 - in the Sun and other stars ("stellar magnetism")
 - in galaxies, clusters and the early universe ("cosmic magnetism")
- Understanding their structural, statistical, and dynamical properties
- Addressing important physics (and maths) problems
 - Deep connections with hydrodynamic turbulence and more generally (turbulent) transport problems
- Coming up with "useful stuff" for experimentalists and observers
 - Warning: people strongly disagree on the definition of "useful stuff"

The fluid/plasma dynamo conundrum

- Most astrophysical bodies, and many planetary interiors, are
 - in an electrically conducting fluid (MHD) or weakly-collisional plasma state
 - in a turbulent state
 - (differentially) rotating: shearing, Coriolis and precessing effects
- Main questions
 - Can flows of electrically conducting fluid/plasma amplify magnetic fields ?
 - What are at the time and spatial scales on which this happens?
 - At what amplitude do they saturate ? What field structure is produced ?
- A complex and multifaceted problem
 - Requires observations, phenomenology, theory, numerics and experiments

A touch of history

- Self-exciting fluid dynamos are now a century-old idea
 - First invoked by Larmor in 1919 (sunspot magnetism)
- The idea took a lot of time to gain ground
 - Cowling's antidynamo theorem (1933)
 - First examples in the 1950s (e.g. Herzenberg dynamo)
 - Parker's solar dynamo phenomenology (1955)
- Golden age of mathematical theory

- Small-scale dynamo theory: Kazantsev 1967, Kraichnan, Zel'dovich et al. (70s-80s)
- Numerical and experimental era
 - Numerical evidence of turbulent dynamos: Meneguzzi et al. 1981, flourishing since then
 - Experimental evidence: Riga, Karlsruhe (~2000), VKS (2007), plasma underway (2005+)
 - Great observational radio and spectro-polarimetric prospects too (stellar, galactic, cosmo)

Solar magnetism

[Credits: SOHO/NASA]

2007/08/25 01:19

[Credits: Hinode/JAXA]

Global solar cycle dynamics ~ 1G-a few kG (sunspots)

Small-scale surface dynamics ~ up to kG

Planetary magnetism

Earth's magnetic field (2014) ~ 10-50 G (0.1-0.5 G at the surface)

Jupiter Auroras

Galactic magnetism

Galactic magnetic field ~ 10 μ G

[Planck/ESA]

M51 magnetic field

[Beck et al. VLA/Effelsberg]

Galaxy clusters and cosmic magnetism

[Fabian et al. ESA/NASA] Perseus/NGC 1275 filaments

[Durrer & Neronov, A&A Rev. 2013]

[Taylor & Perley, ApJ 1993] Hydra A Lobe (25 kpc)

ICM fields ~10 µG

Takeaway phenomenological points

- Many astrophysical objects have global, ordered fields
 - Differential rotation, global symmetries and geometry important
 - Coherent structures and MHD instabilities may also be very important
 - Motivation for the development of "large-scale" dynamo theories
- Lots of "small-scale", random fields also discovered from the 70s
 - These come hand in hand with global magnetism
 - Simultaneous development of "small-scale dynamo" theory
- Astrophysical magnetism is in a nonlinear, saturated state
 - Linear theory likely not the whole story (or requires non-trivial justification)
 - Multiple scale interactions expected to be important

Setting the stage

Mathematical formulation

• Compressible, viscous, resistive MHD equations

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0 \\ \text{Lorentz force} & \text{External forcing (spoon, gravity etc.)} \\ \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) &= -\nabla p + \frac{\mathbf{j} \times \mathbf{B}}{c} + \nabla \cdot \boldsymbol{\tau} + \mathbf{F}(\mathbf{x}, t) \\ \text{Viscous stresses} \\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times (\eta \nabla \times \mathbf{B}) \\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times (\eta \nabla \times \mathbf{B}) \\ \text{Magnetic diffusion } \eta &= \frac{c^2}{4\pi\sigma} \\ \nabla \cdot \mathbf{B} &= 0 \qquad \mathbf{j} = \frac{c}{4\pi} \nabla \times \mathbf{B} \\ \rho T \left(\frac{\partial s}{\partial t} + \mathbf{u} \cdot \nabla s \right) &= D_{\mu} + D_{\eta} + \nabla \cdot (\kappa \nabla T) \end{split}$$

Magnetic field energetics

Magnetic energy equation

$$\frac{d}{dt} \int \frac{\mathbf{B}^2}{8\pi} dV = -\int \mathbf{u} \cdot \frac{(\mathbf{j} \times \mathbf{B})}{c} dV - \frac{c}{4\pi} \oint (\mathbf{E} \times \mathbf{B}) \cdot d\mathbf{S} - \int \frac{\mathbf{j}^2}{\sigma} dV$$

Minus the work of the Lorentz force on the flow

Poynting flux

Ohmic dissipation

- Magnetic field is generated at the expense of kinetic energy
- Simple but enlightening local equation (ideal MHD)

$$\frac{1}{B} \frac{DB}{Dt} = \hat{\mathbf{b}}\hat{\mathbf{b}} : \nabla \mathbf{u} - \nabla \cdot \mathbf{u}$$

Stretching Compression $\hat{\mathbf{b}} = \frac{\mathbf{B}}{B}$

 $\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla$

Conservation laws in ideal MHD

- Alfvén's theorem(s)
 - Magnetic field lines are "frozen into" the fluid just as material lines

$$\frac{D}{Dt}\left(\frac{\mathbf{B}}{\rho}\right) = \frac{\mathbf{B}}{\rho} \cdot \nabla \mathbf{u} \qquad \qquad \frac{D\delta \mathbf{r}}{Dt} = \delta \mathbf{r} \cdot \nabla \mathbf{u}$$

Magnetic flux through material surfaces is conserved

$$\frac{D}{Dt} \left(\mathbf{B} \cdot \delta \mathbf{S} \right) = 0$$

• Magnetic helicity $\mathcal{H}_m = \int \mathbf{A} \cdot \mathbf{B} d^3 \mathbf{r}$ conservation

• A measure of magnetic linkage / knottedness

$$\frac{1}{c}\frac{\partial \mathbf{A}}{\partial t} = -\mathbf{E} - \nabla\varphi$$
$$\frac{\partial}{\partial t}(\mathbf{A} \cdot \mathbf{B}) + \nabla \cdot [c\varphi \mathbf{B} + \mathbf{A} \times (\mathbf{u} \times \mathbf{B})] = 0$$

Astroplasma, November 2020

 $\delta \mathbf{S}$

Simple MHD system for dynamo theory

- Incompressible, resistive, viscous MHD
 - Captures a great deal of the dynamo problem

Magnetic tension $\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \mathbf{B} \cdot \nabla \mathbf{B} + \nu \Delta \mathbf{u} + \mathbf{f}(\mathbf{x}, t)$ Induction/stretching $\frac{\partial \mathbf{B}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{u} + \eta \Delta \mathbf{B}$ Advection $\nabla \cdot \mathbf{u} = 0 \qquad \nabla \cdot \mathbf{B} = 0 \qquad p \text{ and } \mathbf{B} \text{ rescaled by } \rho \text{ and } (4\pi\rho)^{1/2}$

- Often paired with simple periodic boundary conditions
 - Can be problematic in some cases (more later)

Scales and dimensionless numbers

- System/integral scale ℓ_0 , U_0
- Fluid system with two dissipation channels
 - Dimensionless numbers:

$$\operatorname{Re} = \frac{\ell_0 U_0}{\nu} \qquad \operatorname{Rm} = \frac{\ell_0 U_0}{\eta} \qquad \operatorname{Pm} = \frac{\nu}{\eta}$$

- Kolmogorov viscous scale $\ell_v \sim Re^{-3/4} \ell_0$, $u_v \sim Re^{-1/4} U_0$
- Magnetic resistive scale ℓ_{η} (Pm-dependent)
- Another important dimensionless quantity
 - Eddy turnover time $\tau_{\rm NL} \sim \ell_{\rm u}/{\rm u}$
 - Flow/eddy correlation time $\tau_{\rm C}$

$${
m St} = rac{{{ au _{
m c}}}}{{{ au _{
m NL}}}}$$
 Strouhal/Kubo number

The magnetic Prandtl number landscape

- Wide range of Pm in nature
 - Liquid metals have Pm << 1
 - Computers have Pm ~ O(1)
- For a collisional hydrogen plasma [Te=Ti in K, *n* in S.I.]

 $Pm = 2.5 \times 10^3 \frac{T^4}{n \ln \Lambda^2}$

- Pm<1 and Pm>1 seemingly very different situations
 - Naively, Pm>1 makes
 life easier for magnetic fields

Astroplasma, November 2020

Large magnetic Prandtl numbers

- Pm > 1: resistive cut-off scale is smaller than viscous scale
 - In Kolmogorov turbulence, rate of strain goes as $\ell^{-2/3}$
 - Viscous eddies are the fastest at stretching B: $u_v / \ell_v \sim Re^{1/2} U_0 / \ell_0$
 - To estimate the resistive scale ℓ_η , balance stretching by these eddies ~ $u_{V/}\ell_V$ with ohmic diffusion rate η/ℓ_η^2

Low magnetic Prandtl numbers

- Pm < 1: resistive cut-off falls in the turbulent inertial range
 - To estimate the resistive scale ℓ_{η} , balance magnetic stretching by the eddies at the same scale ~ u_{η}/ℓ_{η} , with diffusion η/ℓ_{η}^2
 - i.e., Rm $(\ell_{\eta}) = u(\ell_{\eta}) \ell_{\eta} / \eta \sim 1$

Dynamo fundamentals

- The problem of exciting a dynamo is an instability problem
 - Growth requires stretching to overcome diffusion (measured by $Rm = \frac{\ell_0 U_0}{m}$)
- Kinematic dynamo problem: $\frac{\partial \mathbf{B}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{u} + \eta \Delta \mathbf{B}$
 - Find exponentially growing solutions of the linear induction equation (velocity field is prescribed)
- Dynamical problem considers effects of Lorentz force on ${\bf u}$
 - Saturated state of kinematic dynamos: non-linear magnetic back reaction
 - Subcritical scenarios: e.g. joint excitation of u and B via MHD instabilities
- Slow vs Fast
 - A dynamo is slow/fast if its growth rate does/doesn't vanish as $\eta \to 0$

Cowling's antidynamo theorem

• Axisymmetric dynamo action is impossible [Cowling, MNRAS, 1933]

- Poloidal flow can only redistribute flux so χ must decay ultimately
- As χ decays, so must the toroidal field
- Note: only applies if u and B share the same symmetry axis

Antidynamo theorems and their implications

- Many other antidynamo results can be proven
 - Plane two-dimensional motions cannot sustain a dynamo [Zel'dovich's theorem, JETP 1957]
 - A purely toroidal flow cannot sustain a dynamo
 - $\mathbf{B}(x, y, t)$ cannot be a dynamo field
- Dynamos are only possible in "complex" geometries or flows
 - An extra burden for both theory and numerics
 - A popular "minimal" configuration is 2.5D (or 2D-3C)
 - $\mathbf{u}(x, y, t)$ with all three components non-vanishing
 - $\mathbf{B}(x, y, z, t) = \mathcal{R}\left\{\mathbf{b}(x, y, t)e^{ik_z z}\right\}$

The fast dynamo paradigm

[Vainshtein & Zel'dovich, SPU, 1972]

- Chaotic stretching, twisting, folding and merging of field lines
 - For small diffusion, field doubles at each "iteration" (characteristic time)
 - Exponential growth with "ideal" growth rate $\gamma_{\infty} = \ln 2 \sim \text{stretching rate}$

An imperfect dichotomy

- Large-scale dynamo effect
 - Magnetic field generated on
 - long system time (Ω^{-1}, S^{-1}), spatial scales (L) much larger than flow scales ℓ_0
 - also lots of magnetic fluctuations on low and sub flow scales down to the magnetic resistive scale
- Small-scale dynamo effect
 - Magnetic field generated on short time (ℓ/u), spatial scales (ℓ) from flow scales down to the resistive scale
- Each of these can be excited by laminar or turbulent flows
- They have traditionally mostly been described by different theories
 - in all MHD astrophysical settings, large-scale dynamos are swamped by small-scale ones
 - this creates a lot of theoretical difficulties
- MHD instabilities also play a key role in large-scale dynamos
 - the magneto-rotational, and other magnetoshear instabilities
 - Kelvin-Helmholtz instability coupled to magnetic buoyancy