
Blind Quantum Process Tomography
François Verdeil & Yannick Deville
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Abstract
Quantum process tomography (QPT) methods aim at identifying a given quantum process. QPT is a major

quantum information processing tool, since it especially allows one to characterize the actual behavior of quan-
tum gates, which are the building blocks of quantum computers. We aim at developing blind methods of QPT i.e.
methods that do not require the user to know beforehand what qubit are used to identify the process.

Introduction to Quantum Systems

Classical register

• State: B =
(
b1 . . . bn

)
∈ {0, 1}n

• Reading: Straightforward

• Evolution: Does not evolve

Quantum register

• State:

– The state is a superposition of 2n kets: Φ1(t) |0 . . . 0〉 + Φ2(t) |0 . . . 01〉 + ... + Φ2n(t) |1 . . . 1〉

– Characterized by Φ(t) =

Φ1(t)
...

Φ2n(t)

 ∈ C2n,Φ(t)′Φ(t) = 1

– The modulus of each component contains information on the likelihood of each outcome when
a measurement is made

– The relative phases are important when measuring the state in a non-canonical base or when
considering the evolution of the system

– The gobal phase has no physical meaning, thus we generally assume that the first component is
a positive real number

• Reading:

– Measuring φ(t) gives a random set of n bitsMφ ∈ {0, 1}n

– If the measurement is made in the canonical base: p(Mφ = Bk) = |Φk(t)|2 where Bk the binary
expression of k and |.|2 is the component-wise square modulus.

– If φ(t) is measured in an orthonormal base represented by Q, then the 2n dimensional vector
containing the probabilities of each bit string in the order is: p(MQφ) = |QΦ(t)|2

• Evolution:

– Ruled by the Schrödinger equation: ∂φ(t)
∂t = H

i~φ(t). Where H is the Hamiltonian and ~ the
reduced plank constant.

– In a closed system, if the Hamiltonian is time invariant φ(t + ∆t) = Mφ(t) with M = e∆t
H
i~. H

is hermitian so M is unitary (M ′M = I2n)

Main Objectives

• We assume a constant Hamiltonian. We want to estimate the unitary matrix M that characterizes
the process by measuring the output corresponding to unknown input. M can only be determined
up to an unknown global phase.

• Standard methods of quantum process tomography aims at identifying the process by measuring
its effect on a known set of input state.

• We aim to estimate M by measuring the evolution of one or several unknown state going through
the system several times times.

• At each step, we assume that enough measurement are made to achieve quantum state tomography
(QST) i.e. find the quantum state up to a global phase.

• Two complementary approaches are considered to find M

1. A least square approach that uses the states estimated by the QST to find a matching unitary M .
2. A maximum likelihood approach that model the measurement error to find theM and initial state

Φ0 that are the most likely.

Measurement and quantum state tomography
Quantum state tomography aims at estimating a quantum state averaging multiple measurement in
several bases. We are trying to achieve this using only measurements in 3 bases noted X , Y and Z;

• The bases are called X , Y , and Z because if the qubits represent the spins of electrons, then the
bases represent a spin measurement along the X , Y and Z direction.

• They are represented by the orthonormal matrices QXn
QYn and QZn (n is the number of qubit)

•QZn is the identity matrix I2n, and one can show that QXn
and QYn are defined thusly:

QX1
= 1√

2

(
1 1
1 −1

)
, QXn+1

= 1√
2

(
QXn

QXn

QXn
−QXn

)
, QY1 = 1√

2

(
1 −i
1 i

)
, QYn+1

= 1√
2

(
QYn −iQYn
QYn iQYn

)
• By making N measurement on each basis and averaging the frequency of occurrence of every bit

string we getMXΦ,MYΦ andMZΦ

• Their expected values are respectively |QXn
Φ|2, |QYnΦ|

2 and |Φ|2

• Our aim is to find Φ up to a global phase using these measurement. Obviously the information in
MZΦ gives us the modulus of Φ.

• We have yet to prove that the 3 measurements are enough to recover the relative phases of Φ for
n > 3.

Least Square

• Our first method to estimate M uses the estimates Φ̂j∀j ∈ {1, ..., k} of Φj = M jφ0.

• From there we find a unitary matrixM that minimizes the square norm of εLS = M(Φ1, ...,Φk−1)−
(Φ2, ...,Φk)

• Despite the name of the section the least square algorithm is not ideal because it would not guaran-
tee a unitary solution

• Fortunately this is a well known problem in the aerospace community and we have an analytical
solution for M

• The only problem is that all the Φj can only be estimated up to a global phase, and though the
global phase of (Φ1, ...,Φk) has no unwanted impact on the estimate of M , the phase between the
columns do. We had to develop methods to identify those phases.

Maximum likelihood
Once the least square method gives us a first analytical estimate of M we have a good initial point for
a maximum likelihood estimation.

• We first have to define the random error on the measurementM that contains the measurement on
X , Y and Z for all k state

– Each component ofM is the frequency of apparition of a sequence of bit for a given measure-
ment. Thus the elements of NM are random variables following binomial laws.

– Asymptotically (N → +∞), M is a gaussian vector. Its covariance matrix (ΣM) can be esti-
mated using onlyM

– The expected value ofM depends only on Φ0 and M it is notedMth(Φ0,M), it is the reshaped

version of

∣∣∣∣∣
QXn

QYn
QZn

× (Mφ0 ... M
kφ0

) ∣∣∣∣∣
2

on a single column.

• The normalized log-likelihood ofM isL(Φ0,M) =
(
M−Mth(Φ0,M)

)′
Σ−1
M
(
M−Mth(Φ0,M)

)
• We find the M̂, P̂hi0 that maximizes the likelihood. Only M̂ is of interest to us

• If we consider that the initial state is not entangled, the likelihood maximization of the likelihood
has 2n parameters for Phi0 and 4n parameters forM , so 4n+2n parameters in total, it scales really
badly with the number n of qubit.

Future work
• The quantum state tomography is a core part of our algorithm, there is room for improvement there:

– QST is a very well documented problem but the context considered in the literature is generally
different (mixed states, different measurements).

– For a number of qubit greater than 2 we do not have an analytical solution and must rely on
multiple optimizations initialized at random to find a solution.

• For a high number n of qubit, the matrix M we try to estimate is huge (2n × 2n) but in physical
system it is generally sparse because a qubit only interacts with a limited number of neighbors. We
could adapt our method to take the sparsity of M into account in high dimensions.

• In general, the QPT methods that can be found in the literature are not blind and require more types
of measurements but they apply to open system and mixed states.

– Mixed states are statistical mixture of pure states they have 4n − 1 parameters instead of 2n − 2.
– Open system interact with they environment. Pure state are not suited to represent the state of an

open system.
– In an open system, even with a time invariant Hamiltonian, a process is not always unitary.

• We will try to adapt our method to mixed states and open system but probably keep the unitary
model for M
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