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1. But why? Why would you do this?
X-ray observatories like Swift, XMM-Newton and Chandra observed about 1 million sources in the past 20 years. While most of them are still unstudied,
constraining their nature is fundamental to find larger samples of exotic sources (such as tidal disruption events, changing-look AGN, ultraluminous X-ray
sources, intermediate mass black holes...). Developing an automatic classification adapted to this data mining task will be crucial with the development
of surveys of unprecedented size, such as the Vera Rubin observatory, SKA and Athena, and the search for counterparts of multi-messenger events.

2. The work of others before me
An X-ray source can be classified manually by
using its location, the shape of its spectrum and
light-curves (either intra or inter-observations)
and the presence and magnitude of its multi-
wavelength counterparts. You can use this ap-
proach to infer hard and fast rules, however
the resulting classification will be inaccurate,
because the property distributions of different
classes overlap (Figure 2) (case of the decision
tree in Lin et al. 2012). Other works rely on ma-
chine learning techniques such as Random For-
est (e.g. Farrell et al. 2015, Arnason et al. 2020)
but their results are hardly interpretable: no
classification is both accurate and easily
interpretable. Another caveat is that they
are all applied on small samples of a few
∼1000 sources (having the best quality), and
that the reference samples of known sources
are small for some classes (X-ray binaries, cat-
aclysmic variables...). Sometimes their X-ray
samples are also poorly enhanced, e.g. when
they do not include the detections from other X-
ray observatories in the long-term light curves,
or when they do not search for counterparts in
deep optical/infrared catalogues.

Multiwavelength images, X-ray spectrum and light
curves of typical AGN (4XMM J214041.4-234718).

3. Everyone loves Bayesianism
Besides Random Forest, other machine learning techniques can be used to classify X-ray sources. One
of them is the so-called “Naive Bayes Classifier” (Murphy et al., 2006), which is intuitive, probabilistic,
highly interpretable and adapted to small reference samples (Table 1). Say that you want to classify
an unknown source as “Star” or “AGN”, and you known its galactic latitude b = 50◦ and its X-ray
to infrared flux ratio FX/FW 1 = 0.01. According to the distribution of b and log(FX/FW 1), with
prior proportions P(AGN) = 0.75 and P(Star) = 0.25, we obtain the posterior probability:

P(Star|data) = P(Star)L(Star|data)
P(AGN)L(AGN|data) + P(Star)L(Star|data) ≈ 81% (1)

Densities of 2 properties (Galactic latitude and X-ray to infrared flux ratio) in the sample of known AGN and stars.

In practice, we classified XMM sources as AGN, star, X-ray binary (XRB) or cataclysmic vari-
able (CV). We used 13 of their properties, related to 4 categories weighted by a coefficient:
αlocation, αspectrum, αvariability, αmultiwavelength, fine-tuned to optimize the classification results, i.e.
maximizing the recall and precision of the XRB class (next panel). Equation (1) becomes:
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4. Some cool results
After cross-correlating the 4XMM-DR10 catalogue (Webb et al., 2020) with many, many others –
covering known AGN, stars, XRB, CV, plus X-ray, optical and infrared sources – and following the
method described in the panel you just read, we obtained the results detailed in Table 1: high recall
(fraction of this class successfully retrieved) and precision (fraction of true positives among sources
with this classification) for AGN and stars, and a quite good performance for XRB as well (Tranin et
al. submitted to A&A). The test sample, chosen to be all sources which could be classified manually
– i.e. having at least 2 of these: (a,b) an optical/infrared counterpart, (c) a measured spectrum or
S/N > 10, (d) several X-ray detections – represents 55% of the catalogue (315573 sources)!
Classified as ↓ AGN Star XRB CV Total cl.
→AGN 18057 25 122 144 18348
→Star 55 6239 10 2 6306
→XRB 241 31 398 49 719
→CV 27 0 5 55 87
Total 18380 6295 535 250 All

recall (%) 98.2 99.1 74.4 34.8 95.5
precision (%) 95.8 98.6 79.0 71.5 94.8

Total classifications precision (A) Total outliers(B)

→AGN 120061 >90% 7119
→Star 19159 >90% 3878
→XRB 47516 30–65%(C) 7114
→CV 2484 ∼65% 1256
Total 315573 ∼82% 19367

(A) Manual estimation on a sample of >200 sources.
(B) Nice sources having an outlier measure > 10, not defined here.
(C) 65% when spurious multiwavelength correlations are removed.

Number counts and metrics of the classification applied to the reference sample (left) and test sample (right) of XMM.

5. Exploitation of citizen scientists
To improve the classification of XRB and CV,
we want to enlarge their reference samples by
using citizen science. We launched the plat-
form CLAXSON (http://xmm-ssc.irap.omp.
eu/claxson), on which volunteers can learn how
to classify XMM sources manually (trial and
error on known objects) and then classify un-
known sources. Each object is given to several
volunteers to obtain reliable classifications. So
far, 46 volunteers performed 40000 clas-
sifications of unknown sources, with a mean
success rate of 82%. They found ∼50 new XRB.

Glimpse of CLAXSON feedback on an unknown source
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