

Abstract : The X-ray Integral Field Unit (X-IFU) on-board the Athena mission is a cryogenic x-ray spectrometer operating at 90 mK. With its pixel array of 3168 Transition Edge Sensors (TES), it will provide unprecedented spatially resolved high-resolution spectroscopy (2.5 eV FWHM up to 7 keV) in the 0.2-12 keV energy range. The X-IFU is at the end of its preliminary definition Phase (Phase B). In this context, we need to test and assess the capabilities of the X-IFU. Realistic mock observations and functional demonstration of the detection chain are key tools to demonstrate that the X-IFU complies to the specific science requirements. In this view I present my results and work perspectives for: 1) The test of the electronic readout chain integrated in the CNES/IRAP cryogenic test bench. 2) End-to-end simulations of the X-IFU observations for a distant group of galaxies.

ATHENA'S X-RAY INTEGRAL FIELD UNIT

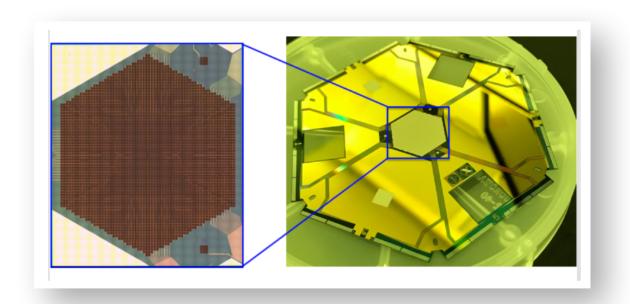


Figure 2: Prototype TES microcalorimeter array (left) and its supporting wafer (right) (Credits: NASA/GSFC)

OBJECTIVES

- The evaluation of the feasibility of the objectives for the Hot Universe core science of X-IFU/Athena with respect to the anticipated performances of the instrument.
 - Testing and validating X-IFU capabilities together with end-to-end numerical simulations and functional test bench
- Development of new processing tools for the X-IFU high spectral resolu-tion data.
 - Developing post-processing tools to take advantage of the spectral high-resolution

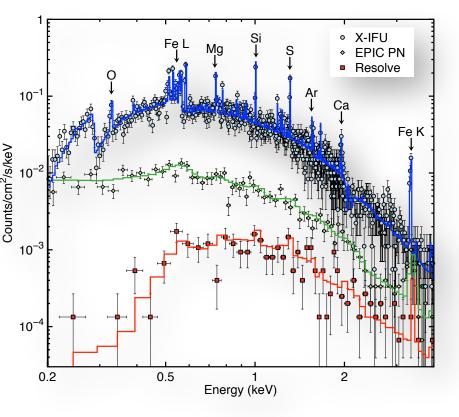
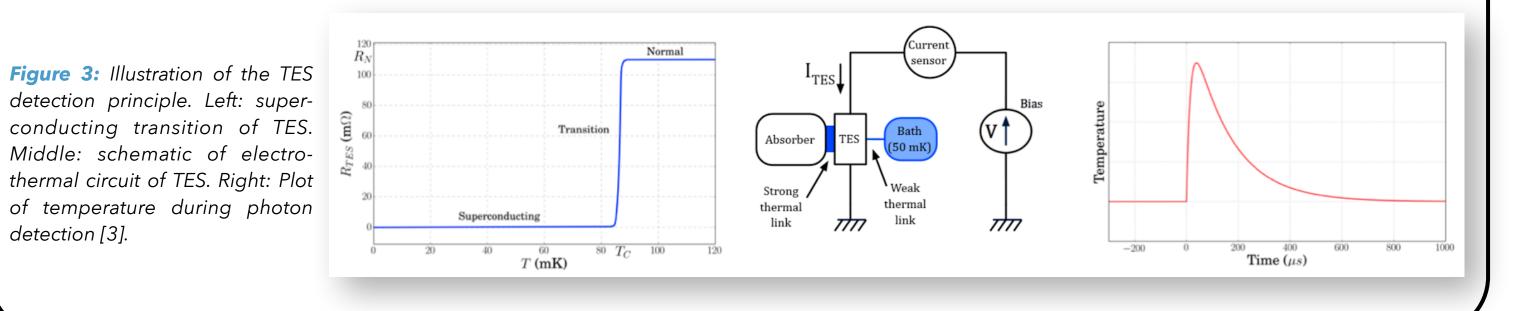
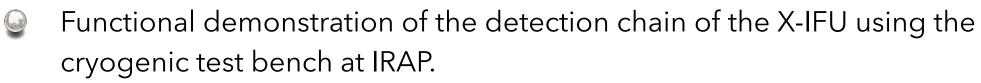



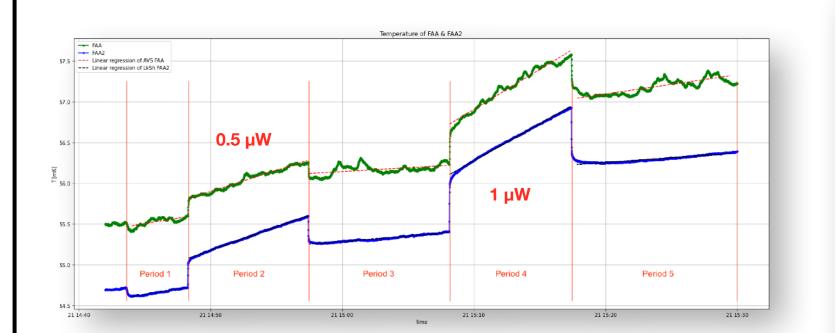
Figure 1: X-IFU cryogenic chain in flight model (Credits: CNES). 1) TES array 2) Kevlar suspension 3) Readout assembly with FE SQUID chip 4) Mu-metal shield 5) Nb shield

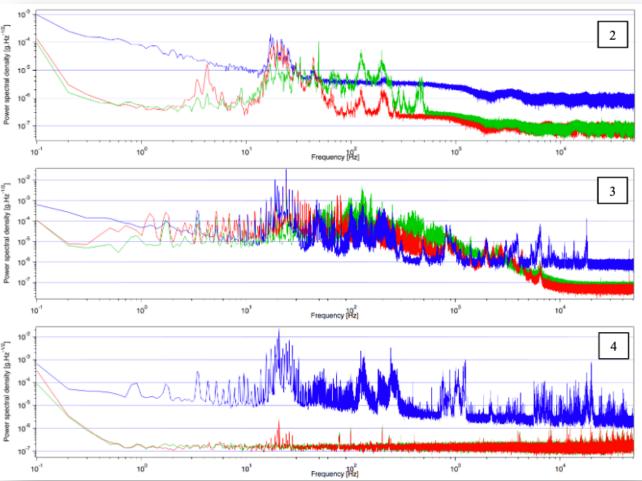

- Athena is the ESA L2 mission dedicated to the study of the Hot and Energetic universe [1]
 - How does ordinary matter assemble to create the large scale structures?
 - How do black holes grow and shape their surrounding Universe?
- The X-IFU is built by a consortium of 11 European countries with contributions from the USA and Japan (PI-ship: IRAP, Prime: CNES)
- It is a cryogenic imaging spectrometer operating at 90mK, its key performance requirements are listed in Table 1.

50MK TEST BENCH AT IRAP

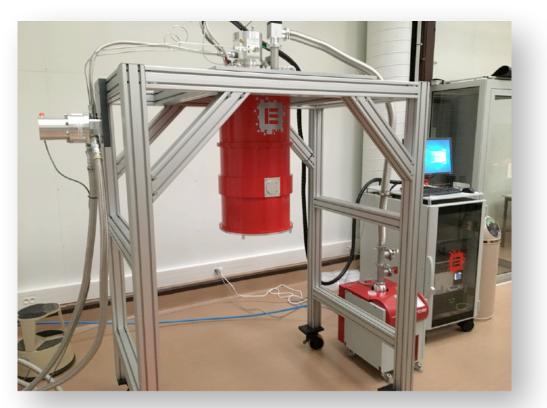
In order to test and validate the cryogenic TES detection chain, a CNES/IRAP Test Bench (named Elsa) has

Field of view Angular resolution	5' (equivalent diameter) ~ 5'' (~mirror PSF HEW)
	~ 5" (~mirror PSF HEW)
Background level	<5 10 ⁻³ count/s/cm ² /keV
Energy range	0.2 - 12 keV
Gain calibration error	0.4 eV
Count rate capability	1 mCrab (2.5 eV, 80% eff.) 10 mCrab (2.5 eV, 80% eff.,goal) 1 Crab (<30 eV, 30% eff.)
ble 1: High level perform ee also [2])	ance parameters of the X-IFU

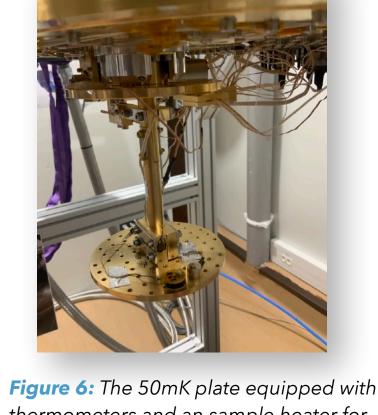


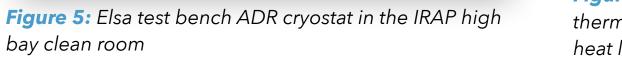

Figure 4: Simulated X-IFU spectrum at z=1 of a galaxy cluster with kT =3 keV[1]

Undertaking an end-to-end demonstration of the cryogenic detection chain of X-ray photons for further implementation and calibration

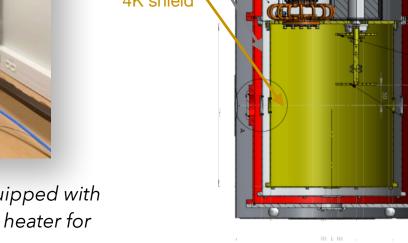

CRYOSTAT CHARACTERISATION AND BUILD-UP

- Before implementing the TES and electronic readout chain, it is important to characterise the 50mK test bench cryostat performances:
 - Magnetic (residual) field inside the cryostat has been measured to acceptable result (i.e. <1 μ T)
 - The level of micro-vibrations transmitted by the ground floor has been assessed (Figure 9) and reduced with shock absorbers.
 - Nominal temperature stability has been verified, with a standard deviation of 3 μ K at 50mK.
 - Heat load tests (1 μ W) have been performed in order to study the ADR magnet behaviour (Figure 8).
- The test bench will then be implemented with:
 - A NASA/GSFC 2x32 TES pixel array installed at the focal plane
 - Visible/IR blocking filters along the optical path
 - A radioactive Fe-55 as a source of X-ray photons at the energy of E = 6.4 keV
 - Laboratory room temperature readout electronics by NASA/GSFC, to be later replaced by the baseline WFEE from APC and DRE from IRAP.

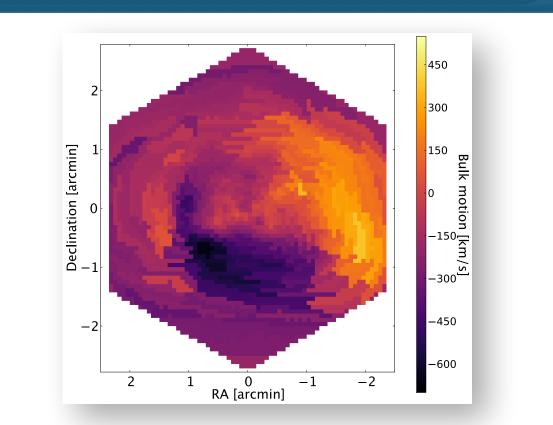




- been developed to perform a functional demonstration of the detection chain.
- That includes the cryogenic readout sub-system plugged on TES as well as the warm readout chain: the 6 WFEE (Warm Front End Electronics [4) and the DRE (Digital Readout Electronics [3]).
- The 50 mK stage is provided by a multi-stage cryostat from Entropy GmBH made up of:
 - A two-stage pulse tube cooler reaching 70K and 4K.
 - An ADR (Adiabatic Demagnetisation Refrigerator) composed by superconducting magnet and a salt pill unit delivering ~35mK base temperature.



bay clean room



70K shield

Figure 7: Schematic of the test bench cryostat

X-IFU END-TO-END SIMULATOR

To study the scientific performances of X-IFU, the end-to-end SIXTE simulator has been developed to produce an X-IFU

Pulse tube coole

Salt pill unit

6T ADR Magnet

Magnetic shield

GGG plate (~500 mK)

FAA plate (~50 mK)

Figure 8: Plot of thermometry measurements at two different parts of the 50mK plate. The five periods correspond to several heat loads with sample heater: periods 1,3 and 5 corresponds to no heat load while period 2: 0.5μ W and period 4: 1µW. Measurements of step heights allowed to compute the thermal conductance of the salt pill unit "cold finger" ($G = 4 \pm 2 \mu W/mK$ corresponding to RRR = 60 ± 30).

Figure 9: Measured power spectral density of micro-vibration signals on the 3 different axes: x (blue) for left and right, y (red) for front and back, z (green) for up and down. The x-axis probe is a cryogenic sensor and so more sensitive than the others.

SHOW-CASE OF X-IFU CAPABILITIES

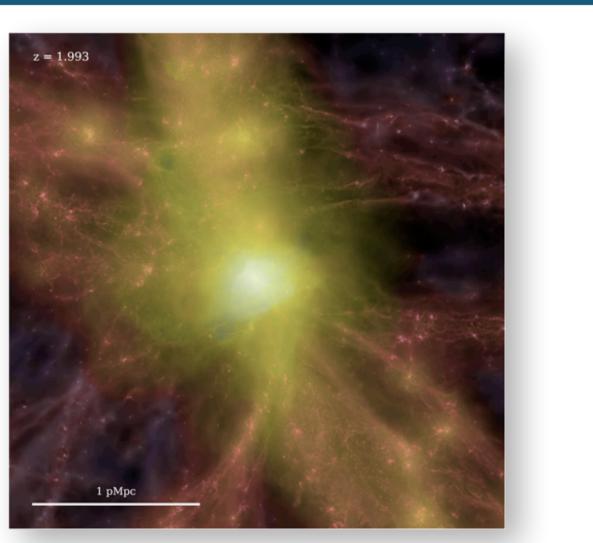


Figure 13: Gas particles visualisation on the selected

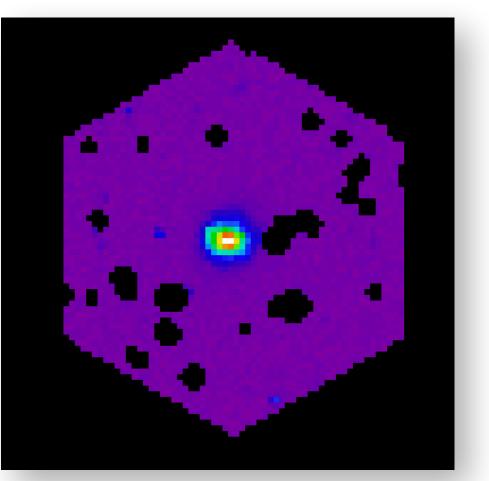
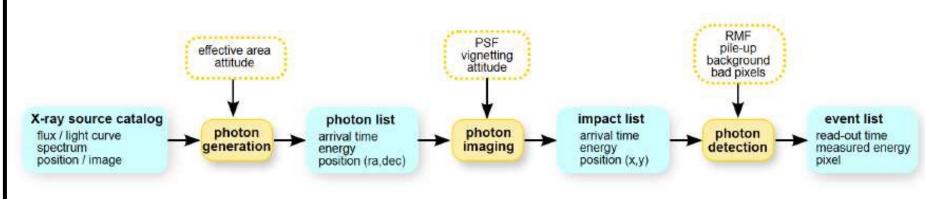



Figure 14: Count image simulated by SIXTE. Astrophysical, Cosmic and Non-X-ray background have been simulated following the same methodology as [6]. Resolved AGN background has been removed.

- event list of a simulated X-ray source.
- This simulator takes into account: *Properties of the sources like geometry, timing variation, spectra,... *Detector geometry (pixel size)
 - *****Full imaging process (PSF, vignetting,...)
 - #Instrumental effects (background, cross-talks, ...)

Figure 10: Data flow of the end-to-end SIXTE pipeline from [5]

The output simulated observation may be post-processed with imaging and spectral analysis tools in order to perform scientific research.

Figure 11: Reconstructed bulk motion velocity field of the hot ntra-cluster gas for a 50 ks X-IFU observation [6]

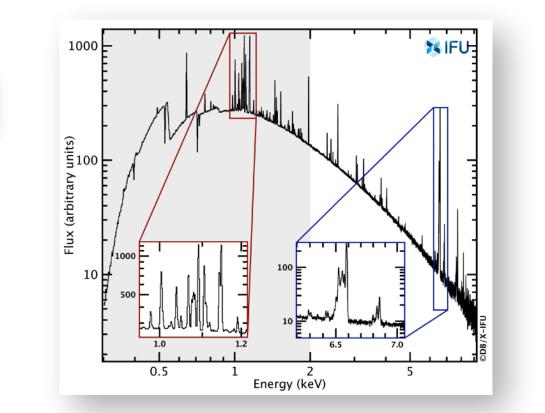


Figure 12: Perseus spectrum seen by the X-IFU simulated for a 100 ks exposure time [7]

group of galaxies in cosmological simulations. (Credits: Yannick Bahé/Hydrangea Team)

- Demonstrate the abilities of X-IFU to perform a physical characterisation of early group and clusters.
- Mock observations of a distant (z = 2) group of galaxies ($M_{500} = 7 \ 10^{13} M_{sun}/h$) extracted from HY-DRANGEA cosmological SPH simulation [8].
- Input to X-IFU simulations:
 - Bulk motion velocity of the ICM (Intra Cluster Medium) like in Figure 11
 - Chemical abundances of the ICM and spatial distribution of those chemical species into the cluster.
 - Dynamical structure of the cluster (such as merger groups,...)
- In order to recover the galaxy cluster physical characteristics I develop post-processing tools to be used later on X-IFU nominal utilisation.

References:

[1] Barret et al., 2016, Proceedings SPIE, Vol 9905, 99052F [2] Pajot et al., 2018, 2018, JLTP 193, 901 [3] Ravera et al., 2018, Proceedings SPIE, Vol 10699,106994V [4] Chen et al., 2018, Proceedings SPIE, Vol 10699, 106994P [5] Dauser et al., 2019, A&A, Vol 630 [6] Cucchetti et al., 2018, A&A, Vol 620 [7] Barret et al., 2018, Proceedings SPIE, Vol 10699, 106991G [8] Bahé et al., 2017, MNRAS, Vol 470

