Fusion of hyperspectral and panchromatic data, extension to the thermal infra-red range

 J_{Ω}

Yohann CONSTANS^{1,2}

1st year PhD student

Thesis directors: Xavier Briottet¹, Yannick Deville² Thesis supervisor: Sophie Fabre¹ Industrial supervisors: Vincent Crombez³, Michael Seymour³ Co-funding: ONERA-ADS

¹ONERA/DOTA, ²IRAP/SISU, ³Airbus/ADS

THE FRENCH AEROSPACE LAB

Context, issue, objectives

Context

- Both high **spatial** and **spectral** resolutions needed for Earth observation. Problem: sensors cannot provide *simultaneously* such characteristics.
 - Solution: Pan sharpening ⇒ Fusion of panchromatic [PAN] (spatial info) and hyperspectral [HS] (spectral info) images

Context, issue, objectives

Context

- Both high **spatial** and **spectral** resolutions needed for Earth observation. Problem: sensors cannot provide *simultaneously* such characteristics.
 - Solution: Pan sharpening ⇒ Fusion of panchromatic [PAN] (spatial info) and hyperspectral [HS] (spectral info) images

Limits of existing methods:

- limited spatial resolution ratios (4),
- strong spatial variability (mixed pixels),
- non-uniform irradiance (shadow),
- limitation to the reflective spectral range [0,4-2,5 μm].

() Irap

Context, issue, objectives

Context

- Both high **spatial** and **spectral** resolutions needed for Earth observation. Problem: sensors cannot provide *simultaneously* such characteristics.
 - Solution: Pan sharpening ⇒ Fusion of panchromatic [PAN] (spatial info) and hyperspectral [HS] (spectral info) images

Limits of existing methods:

- limited spatial resolution ratios (4),
- strong spatial variability (mixed pixels),
- non-uniform irradiance (shadow),
- limitation to the reflective spectral range [0,4-2,5 μm].

Reference method: Gain

Scale factor derived from PAN image and applied to all bands of the oversampled HS image (see poster!).

Objective: Development and validation of a fusion method for HS-PAN images, in the whole optical domain, with mixed pixel unmixing and shadow processing.

Current method : SOSU (Spatially Organized Spectral Unmixing) = Unmixing + Gain

AIRBUS

ONERA

THE FRENCH AEROSPACE LAB

irap

5

Data set and protocol

Data set

Stadium – SYSIPHE : HS simulated image (RGB representation), 64 x 64:

Spatial resolution: 1.5 m

PAN/HS resolution ratio: 4

Spectral range: $[0,4 \ \mu m - 2,5 \ \mu m]$

GAIRBUS Oirap

Data set and protocol

Data set

Stadium – SYSIPHE : HS simulated image (RGB representation), 64 x 64:

Spatial resolution: 1.5 m

PAN/HS resolution ratio: 4

Spectral range: $[0,4 \ \mu m - 2,5 \ \mu m]$

Data set and protocol

Data set

Stadium – SYSIPHE : HS simulated image (RGB representation), 64 x 64:

Spatial resolution: 1.5 m

PAN/HS resolution ratio: 4

Spectral range: [0,4 μm – 2,5 μm]

Quality measures

Compare quality of fused images (against reference image): **spatial** (RMSE), **spectral** (SAM) and **global** (ERGAS, UIQI) criteria.

Criteria can be applied pixel-wise:

⇒ Error maps

 \Rightarrow Improved/degraded pixel count: Percentage of pixel for which tested method is more/less effective than the other ones.

REF

PAN image

HS image

PhD day – Yohann Constans

REF

PAN image

Segmented image

(EDISON method)

HS image

PhD day – Yohann Constans

REF

PAN image

Segmented image

HS image

S AIRBUS Cirap

SOSU unmixing

REF

PAN image

Segmented image

HS image

Gain fusion

S AIRBUS

SOSU unmixing

SOSU fusion

REF

PAN image

Segmented image

Gain/ref SOSU/ref

PhD day – Yohann Constans

HS image

Gain fusion

SOSU fusion

ONERA

THE FRENCH AEROSPACE LAB

Oirap

RMSEUIQIIref3.981.003ref3.950.993

ERGASSAM3,67.1040.093,81.1040.09

MAIRBUS

Results : spectra and measures

Results : spectra and measures

15

THE FRENCH AEROSPACE LAB

Results : spectra and measures

16

Thank you for your attention!

Selected bibliography:

- [1] L. Loncan et al., "Hyperspectral Pansharpening: A Review," in *IEEE Geoscience and Remote Sensing Magazine*, vol. 3, no. 3, pp. 27-46, Sept. 2015.
- [2]L. Loncan, Fusion of hyperspectral and panchromatic images with very high spatial resolution, Diss., Université Grenoble Alpes, 2016.
- C. Chisense, J. Engels, M. Hahn, et al., "Pansharpening of hyperspectral images in urban areas," in International [3] Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 39-B7, XXII ISPRS Congress, Melbourne, Australia, pp. 387-392, Aug. 2012.

ONERA

THE FRENCH AEROSPACE LA

Endmember extraction

- For each mixed HS pixel, 2 ways of extracting endmembers:
 - Pure neighbour pixel spectra (configurable neighbourhood)
 - VCA applied to each segment included in the HS pixel
- Once the list of possible endmember has been set:
 - Endmember reduction via correlation (threshold test)
 - Abundance estimation
 - Endmember reduction via abundance (threshold test)

Endmember extraction

- For each mixed HS pixel, 2 ways of extracting endmembers:
 - Pure neighbour pixel spectra (configurable neighbourhood)
 - VCA applied to each segment included in the HS pixel
- Once the list of possible endmember has been set:
 - Endmember reduction via correlation (threshold test)
 - Abundance estimation
 - Endmember reduction via abundance (threshold test)

Spatial reorganisation within HS coarse pixel

Several possible methods:

1) Distances only (without considering abundances)

Endmember extraction

- For each mixed HS pixel, 2 ways of extracting endmembers:
 - Pure neighbour pixel spectra (configurable neighbourhood)
 - VCA applied to each segment included in the HS pixel
- Once the list of possible endmember has been set:
 - Endmember reduction via correlation (threshold test)
 - Abundance estimation
 - Endmember reduction via abundance (threshold test)

Spatial reorganisation within HS coarse pixel

Several possible methods:

1) Distances only (without considering abundances)

Endmember extraction

- For each mixed HS pixel, 2 ways of extracting endmembers:
 - Pure neighbour pixel spectra (configurable neighbourhood)
 - VCA applied to each segment included in the HS pixel
- Once the list of possible endmember has been set:
 - Endmember reduction via correlation (threshold test)
 - Abundance estimation
 - Endmember reduction via abundance (threshold test)

RBL

Spatial reorganisation within HS coarse pixel

Several possible methods:

Endmember extraction

- For each mixed HS pixel, 2 ways of extracting endmembers:
 - Pure neighbour pixel spectra (configurable neighbourhood)
 - VCA applied to each segment included in the HS pixel
- Once the list of possible endmember has been set:
 - Endmember reduction via correlation (threshold test)
 - Abundance estimation
 - Endmember reduction via abundance (threshold test)

RBU

Spatial reorganisation within HS coarse pixel

Several possible methods:

Endmember extraction

- For each mixed HS pixel, 2 ways of extracting endmembers:
 - Pure neighbour pixel spectra (configurable neighbourhood)
 - VCA applied to each segment included in the HS pixel
- Once the list of possible endmember has been set:
 - Endmember reduction via correlation (threshold test)
 - Abundance estimation
 - Endmember reduction via abundance (threshold test)

THE FRENCH AFROSPACE LA

Endmember extraction

- For each mixed HS pixel, 2 ways of extracting endmembers:
 - Pure neighbour pixel spectra (configurable neighbourhood)
 - VCA applied to each segment included in the HS pixel
- Once the list of possible endmember has been set:
 - Endmember reduction via correlation (threshold test)
 - Abundance estimation
 - Endmember reduction via abundance (threshold test)

THE FRENCH AEROSPACE LA

24