

Simulation of SPIRou radial velocity observations of transiting exoplanets

IRAP PhD Day 2019

Baptiste KLEIN 2nd year PhD student Advisor: Jean-François Donati

Established by the European Commission

H2020 research and innovation programme Grant agreements #740651 NewWorlds

05 June 2019

ESPaDOnS observations, Hussain+2006

Goal: Constrain **bulk density**, thus inner composition → **precise mass and radius needed**

Only handful Earth-sized planets with precise mass and radius

No young (<100 Myr) close-in (<1 AU) giant with precise mass and radius

© Artist impression of K2-33, NASA/JPL-Caltech

Lack of mass measurement for Earth-sized planets and young close-in giants!

- RV signature for Earth-sized planets: < 1 m/s
- LS deconvolved spectra V471Tau -- 28nov04 001 1.01 1.00 0.99 ₹ 0.98 0.97 0.96 0.95 -300-200-100100 200 300 0 Velocity [km/s]

ESPaDOnS observations, Hussain+2006

Stars are active → generation of RV signals

Constraining the M-R diagram with SPIRou

SPIRou - Spectropolarimètre InfraRouge

Spectral range	nIR (YJHK bands)			
Resolution	75 000			
RV precision	Goal: 1 m/s (~2 m/s)			

SLS-TF: SPIRou Legacy Survey Transit Follow-up: 75 nights

Mesuring the mass of Earth-sized planets around M dwarfs and young close-in giants

TRAPPIST-1 - Representative of the SLS-TF targets

Goal: Simulate SPIRou RV observations of a representative targets of the SLS-TF: TRAPPIST-1 Can we recover the masses of the TRAPPIST-1 planets with SPIRou?

Planet masses constrained through transit timing variations

TRAPPIST-1 - Representative of the SLS-TF targets

Goal: Simulate SPIRou RV observations of a representative targets of the SLS-TF: TRAPPIST-1 Can we recover the masses of the TRAPPIST-1 planets with SPIRou?

Simulation of SPIRou RV observations of TRAPPIST-1

Klein & Donati 2019, Submitted

2

80

Phase: 9.0

Simulation of SPIRou RV observations of TRAPPIST-1

Various sampling Strategies

Results - Fit to the data

Assuming unrealistic high-cadence sampling

Earth-sized planets recovered with precision > photometry

Mars-sized planets completely drowned into stellar activity

Klein & Donati 2019. Submitted

Results - Impact of sampling

White noise of 1 m/s Average on 50 signals with different realisation of white noise

Sampling	Good weather	Detection threshold (σ)							
		b	С	g	f	е	d	h	
Even	100 %	12	24	10	12	11	2	1	
SPIRou: 1 pt/n on all nights + SPIP: 1 pt/n on all nights	85 % 50 %	11	15	8	8	8	2	1	
SPIRou: 1 pt/n on bright time only + SPIP: 1 pt/n on all nights	85 % 50 %	8	9	5	5	5	2	1	
SPIRou: 1pt/n on all nights	85 %	6	6	4	4	5	2	1	

Fair detectionInaccurate mass estimateNo detection

- Good mass estimates for planets b and c
- Uniform coverage of planets and activity curves is **critical** to accurately recover the planet masses

Take-home message

- TRAPPIST-1 K2 light curve suggests a stellar activity signal of ~5 m/s as strong as planet signal!
- RV jitter particularly harms the detection of planets with (i) small RV amplitudes and (ii) orbital periods close to harmonics of the rotation period
- Dense coverage of planet and stellar rotation curves is critical to accurately recover the planet masses -- In particular for rapidly rotating active stars (adaptive strategy)
- Good mass estimates for planets with RV semi-amplitude ≥ RV jitter/5 can be obtained independent from photometric mass estimates!
- Application to a ~10 Myr close-in giant to be observed with SPIRou in 2019a (klein+2019 in prep)

