MODELING MAXI J1836-194 JET EMISSION USING THE ACCRETION FLOW VARIABILITY

Mathias Péault

Advisors: Julien Malzac & Mickael Coriat

Institut de Recherche en Astrophysique et Planétologie

Journée des thèses

June 21, 2017

MATHIAS PÉAULT

MODELING MAXI J1836-194 JET EMISSION 1 / 14

MY SUBJECT

Subject : Multiwavelength emission of relativistic jets

MY SUBJECT – ASTROPHYSICAL JETS

Subject : Multiwavelength emission of relativistic JETS

Observed in:

Active galaxies Star in formation X-ray binaries, ...

Artistic view of an X-ray binary

MAXI J1836-194

MY SUBJECT – RELATIVISTIC JETS

Subject : Multiwavelength emission of **RELATIVISTIC** jets

Relativistic jets:

- Velocities close to c
- Black holes or Neutron Star → *Quasars*, *microquasars*

Messier 87 (Hubble, NASA)

MY SUBJECT – MULTI- λ <u>Emission</u>

 $Subject: \ MULTIWAVELENGTH \ EMISSION \ of \ relativistic \ jets$

From radio to $\gamma\text{-rays}$

 \rightarrow Especially Radio and IR

Problem: Jets with $v \sim c$ from obj. like black holes? mechanisms ?

MY SUBJECT – MULTI- λ <u>Emission</u>

${\sf Subject}: \ {\sf MULTIWAVELENGTH} \ {\sf EMISSION} \ of \ relativistic \ jets$

 \rightarrow Especially Radio and IR

Problem: Jets with $v \sim c$ from obj. like black holes? mechanisms ?

MATHIAS PÉAULT

INTERNAL SHOCKS

Solution: Gamma-ray burst model applied to X-ray binaries!

Internal shock model \Rightarrow shocks at the origin of the jet emission

(Description of a gamma-ray burst)

MATHIAS PÉAULT

FLICKER NOISE FLUCTUATIONS

Interestingly, can be found in the accretion flow variability!!!

MATHIAS PÉAULT

MODELING MAXI J1836-194 JET EMISSION 7 / 14

OBJECTIVE

Model the multi- λ emission of the jet in MAXI J1836-194

- BH transient discovered in 2011
 - Quasi-simultaneous observations : VLA (Radio), VLT (IR), Faulkes Ts (Opt.), Swift, RXTE (X-rays)
- Why interesting ?
 - Several data sets ⇒ many data points!
 → Different levels of L, study the jet evolution
 - The disk is no dominant in IR

DATA SETS

- Hard state: Sep 03 ⁻, Oct 12 ⁻ & Oct 27 ⁻
- HIMS: Sep 17 ●& Sep 26 ●

- Reproduction of the 5 five jet spectra
 - Good spectral shape
 - A minimum of variable parameters
 - Most realistic parameters

POWER SPECTRA

MATHIAS PÉAULT

MAIN PARAMETERS OF THE STUDY

Parameters

Distance [4-10kpc] Inclination [4-15°]

 \iff Related to the source

Index [2-3] Gamma min [?]

 \iff Electron power law distribution

Jet power [$\leq 0.2 L_{EDD}$] Opening angle [$\sim 1^{\circ}$] Mean Gamma [$\sim 2 (<?)$]

 \iff Jet properties

MAIN PARAMETERS OF THE STUDY

MAIN PARAMETERS OF THE STUDY

Parameters

Distance [4-10kpc] Inclination [4-15°]

 \iff Related to the source

Index [2-3] Gamma min [?]

 \iff Electron power law distribution

Jet power [$\leq 0.2 L_{EDD}$] Opening angle [$\sim 1^{\circ}$] Mean Gamma [$\sim 2 (<?)$]

 \iff Jet properties

JET SEDS

FINAL PARAMETERS

Date	Dist	Incli	Index	γ_{min}	Jet power	Opening	γ_{moy}
	kpc				L _{EDD}		
Sep 03	4	8°	2.7	13	0.10	1°	9
Sep 17	4	8°	2.9	13	0.19	1.2°	13
Sep 26	4	8°	2.7	13	0.034	1°	6.5
Oct 12	4	8°	2.7	13	0.008	1°	2
Oct 27	4	8°	2.7	13	0.0032	1°	1.06

FUTURE WORK

Near future

• Paper in preparation

- Later: improve the code
 - Radiative cooling of e-
 - Inverse Compton emission: $\gamma\text{-rays}$