

Characterization of the detection plane of the ECLAIRs camera for the mission SVOM

Armelle BAJAT

Supervisors : Jean-Luc ATTEIA Olivier GODET

ECLAIRs presentation - Scientific performances

Energy Band	4 - 150 keV
Active surface of the plane	1024 cm ²
Energy resolution @ 60keV	< 1.5 keV
Time resolution	10 µs
Dead Time	< 5%
Field of view	2.02 sr
localisation error box	< 12 arcmin

- Precise and fast localisation
- Photons counting with an adapted sensitivity and resolution in time
- Measuring the temporal and spectral properties of the emisgion

ECLAIRs presentation - modules and electronics

- 6400 pixels
- 4x4x1 mm³ in CdTe
- 32 pixels per modules
- 25 modules per sector
- 8 independant sectors

- Readout Electronic Sector
- Coding :
 - Time
 - Position
 - Energy
 - Multiplicity
- Computation of the energy onboard
- Detection of events with saturate energy

ECLAIRs presentation - electronic readout operations

ECLAIRs presentation - electronic readout operations

DEAD TIME - Method used

SOFTWARE ANALYSIS

• Use of a code simulating the operation of the electronic chain

- Estimation of dead time for 2 cases
 - 12500 cps/s/ELS
 - 5% of dead time

HARDWARE ANALYSIS

Test bench

- Input files with random position energies and time
- Analysis output files
- Estimation of the dead time for 2 cases

Comparison with the software analysis

DEAD TIME - Method used

DEAD TIME - Method used

HARDWARE ANALYSIS

HYPOTHESES

- choice of intputs (Poisson distribution for time)
- All multiples are coded
- 10000 events uniformly distributed over the sector
- differents count rates (200- 140000 cps/s/ELS)

RESULTS

For 12500 cps/s/ELS : Pure Dead Time : 1.3% Total Dead Time : 26.7%

DEAD TIME - Experimental Part

Sources : ²⁴¹Am : 10-60 keV ⁵⁵Fe : 6 keV ⁵⁷Co : 6keV, 122-136keV ⁶⁰Co : (MeV)

DEAD TIME SYNTHESIS

The Pure dead time corresponds to the scientific requirement

In process :

- Application to astrophysical sources
- Impact of the mask shadow on the results
- Experimental part

Bajat et al. In prep (sept. 2017)

Spectral response

Quantum efficiency

- Spectral response : energies redistribution
- the detector on the incident spectrum stamp

Spectral response : Model

Experimental Model 13

ECLAIRs detection plane response - First Results

Temp = -20°

14

ECLAIRs detection plane response - Synthesis

Improvement of the response model First study of statistics parameters

In process :

- Calibration with the Prototype data : extraction of parameters for all detectors
- Incidence angle Impact
- Application to astrophysics sources