Analysis of PAH content in Cosmic Dust Analogues : The AROMA Set-up

Mickaël Carlos, PhD 1st year Supervisors : Christine Joblin, Hassan Sabbah

BUT WHEN I DO, ITS AT 4 AM

• Introduction

- Project Nanocosmos
- My PhD Subject
- <u>AROMA</u>
- <u>CID</u>
- <u>Simulations</u>
- Imaging Source

Introduction

- Nanocosmos Project
 - ERC synergy project
 - Understanding physical and chemical processes leading to cosmic dust formation
- PhD Project
 - Motivations
 - Emission bands of Polycyclic aromatic hydrocarbons (PAHs) are observed in interstellar medium (ISM)
 - 20% of Carbon in ISM
 - Work
 - Simulation of ion dynamics in ion traps
 - Characterization of specific PAH structures by CID and photodissociation
 - Development of an Imaging Source for complex sample analysis
 - Analysis of both synthetic and extraterrestrial samples by direct injection in AROMA or via the Imaging Source

AROMA (Astrochemical Research of Organics using Molecular Analyzer)

- Molecular analyzer that combines laser techniques to produce the ions,
 - Desorption 1064 nm
 - Ionization 266 nm
- Ion Trap to perform dissociation studies or/and guide ions
- oTOF (Orthogonal Time of Flight) to record mass spectra

Performances of AROMA: Mass range : 20 to 10⁴ amu Mass resolution: 8000 to 10000 @ 300 amu Mass accuracy : 10 ppm • Isolation: 1 amu resolution oTOF mass • analyzer MS/MS experiments Photodissociation and kinetics • studies *Ion source:* LDI and L2MS lon trap

L2MS technique used

- Produce ions by:
 - Desorption 1064 nm
 - Ionization 266 nm

Sample

L2MS technique used

- Produce ions by:
 - Desorption 1064 nm
 - Ionization 266 nm

AROMA (Astrochemical Research of Organics using Molecular Analyzer)

- Molecular analyzer that combines laser techniques to produce the ions,
 - Desorption 1064 nm
 - Ionization 266 nm
- Ion Trap to perform dissociation studies or/and guide ions
- oTOF (Orthogonal Time of Flight) to record mass spectra

Performances of AROMA: Mass range : 20 to 10⁴ amu Mass resolution: 8000 to 10000 @ 300 amu Mass accuracy : 10 ppm • Isolation: 1 amu resolution • oTOF mass analyzer MS/MS experiments Photodissociation and kinetics • studies *Ion source:* LDI and L2MS lon trap

AROMA (Astrochemical Research of Organics using Molecular Analyzer)

- Molecular analyzer that combines laser techniques to produce the ions,
 - Desorption 1064 nm
 - Ionization 266 nm
- Ion Trap to perform dissociation studies or/and guide ions
- oTOF (Orthogonal Time of Flight) to record mass spectra

Performances of AROMA: Mass range : 20 to 10⁴ amu Mass resolution: 8000 to 10000 @ 300 amu Mass accuracy : 10 ppm • Isolation: 1 amu resolution oTOF mass • analyzer MS/MS experiments Photodissociation and kinetics • studies *Ion source:* LDI and L2MS lon trap

Examples of CID:

+

Examples of CID

Examples of CID

Examples of CID

oTOF mass

<u>analyzer</u>

Ion Dynamics in Trap

- motion/trajectory of ions in trap, -
- Electrostatic and electrodynamics properties of traps,
- Gas in trap, Collisions, cooling...

Very important to understand and calculate collision energies.

AROMA Simulations

As an example, here I present:

- The trajectory of ions in the trap,
- The maximum displacement from the center as a function of the masses,
- The maximum energy of the ions as a function of the masses.

Dipolar excitation to tune the colliding energy

AROMA Simulations

Same simulations as above but with 10⁻² mbar of Ar, corresponding to the instaneous pressure when we incorporate colliding gas.

This shows the effect of pressure and gas type in the trap. My aim is to perform a full study of these parameters and others.

CID : Experiments and analysis

• Study of Pyrene cation m/z = 202.078

- CID = Collision induced dissociation
 - Collisions of the ions with rare gas atoms
 - We can tune the collision energy by changing the excitation of the ions.
 - We can address here 3 very important parameters which are the V_{app}, the frequency of the excitation and the duration of application of the DE
 - V_{app} is directly linked to the Voltage applied to the electrodes for the DE

 We present CID results performed with off resonance (190kHz) excitation.

- From previous work we know that <u>two</u> <u>main channels</u> are involved in the dissociation of PAHs:
 losses of H/H₂.
 losses of C₂H₂.
- Abundance of fragments as a function V_{app} for a duration of 20 ms

 Abundance of fragments as a function V_{app} for a duration of 20 ms

 Abundance of fragments as a function V_{app} for a duration of 20 ms

The Imaging Source and Ion Dynamics

ene.ob - MMUN

- The ion source uses L2MS technique.
- It will be tested on a home-made TOF and then coupled with the AROMA setup.
- Laser desorption with a spatial resolution of 5 µm on the sample.
- Direct analysis of the sample.
- Distinction of ions with 1m/z mass difference despite the small TOF.
- Scan of a surface
- Mapping the presence of a specific species.

Ion Dynamics in Imaging Source

- We sent a population of 2 different masses.
- Voltages on the electrodes are optimized.
- We obtain the time resolution needed to distinguish ions separated by 1 m/z.

Conclusion

- We succeeded to observe the main channels of dissociation of pyrene (C₂H₂ and H/H₂ loss) using the CID in the LQIT
- We are in the phase of testing the vacuum on the Imaging Source

Perspective

- Analyzing CID results on PAH cations by coupling experiments and ion dynamic simulations.
- Continue developing the ionization source
- Photo-dissociation studies