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Introduction

• Rotation breaks the 1D symmetry

• Rotation induces large scale flows: transport of chemicals and

angular momentum

• Rotation induces mass-loss and angular momentum loss anisotropy

• What is the break-up velocity when both rotation and radiation have

significant effects on the total gravity? (ΩΓ-limit)

• How does rotation affect mass loss from radiation-driven winds?
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Critical angular velocity at the ΩΓ-limit



Critical angular velocity at the ΩΓ-limit

Debate on the subject:

• Langer (1997, 1998): Stars close to Γ-limit have a lower critical

angular velocity

• Glatzel (1998): Eddington parameter Γ has no effect on the critical

rotation

• Maeder (1999), Maeder & Meynet (2000) : 2 different critical ang.

velocities :

• Ωc = Ωk =
√

GM/R3
eq if Γ < 0.639

• Ωc → 0 when Γ → 1 and Γ > 0.639

Γ =
κL

4πcGM
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The radiative flux: von Zeipel theorem revisited

• Maeder (1999), Maeder & Meynet (2000) : Use model of von Zeipel

(1924)

F ∝ −g
4β
eff

with β = 1/4

Assuming solid body rotation

F = −
L(P)

4πGM∗

g eff

with M∗ = M(1− Ω2/2πGρm)
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The radiative flux: von Zeipel theorem revisited

Developing all quantities around their average on an isobar : radiative

flux for shellular rotation Ω = Ω(r)

F = −
L(P)

4πGM∗

[1− ζ(θ)]g eff

where ζ(θ) ≪ 1 : mild dependence with colatitude

• Only valid for slow rotators

• In contradiction with both observations and 2D-ESTER models

Interferometric observations of several rapidly rotating stars +

2D-ESTER models : If

F ∝ −g
4β
eff

then β < 1/4
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The radiative flux: ω-model (Espinosa Lara & Rieutord (2011)

• This model assumes F = −f (r , θ)g eff : F and g eff antiparallel

• In the envelope of a star: flux conservation ∇ · F = 0

• Equation for f (r , θ) can be solved analytically

f (r , θ) =
L

4πGM

tan2 ψ(r , θ)

tan2 θ

where ψ(r , θ) is obtained solving

cosψ + ln tan(ψ/2) =
1

3
ω2r3 cos3 θ + cos θ + ln tan(θ/2)
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The radiative flux: ω-model (Espinosa Lara & Rieutord (2011)

At the equator this can be solved analytically and yields

F (Req, π/2) = −
L

4πGM

(

1−
Ω2

eq

Ω2
k

)

−2/3

g eff

• F/geff diverges at Ω-limit while it does not with vZ theorem

• Difference crucial when seeking conditions leading to ΩΓ-limit
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Critical angular velocity at the ΩΓ-limit

ΩΓ-limit : somewhere at the stellar surface

g tot = g eff + g rad = 0 (1)

We introduce the limiting flux

F lim(θ) =
−c

κ
g eff(θ)

( g eff = −g rad = −
κF lim

c
) We introduce the rotation-dependent

Eddington parameter ΓΩ(θ)

ΓΩ(θ) =
F (θ)

Flim(θ)
=

κ(θ)L

4πcGM

tan2(ψ(r , θ))

tan2 θ

(1) can thus be written

g tot = g eff [1− ΓΩ(θ)] = 0 (2)
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Critical angular velocity at the ΩΓ-limit

g tot = g eff [1− ΓΩ(θ)] = 0

• g tot = 0 if there is a colatitude where ΓΩ(θ) = 1

• Maeder & Meynet (2000) also considered g eff = 0 as a solution

• But β < 1/4 rules out this solution

• (Can only be reached going through a non-realistic gravitationally

unbound stage of supercritical angular velocity)

ΓΩ(θ) is an increasing function of θ :

• f (r , θ) always increases with increasing θ

• κ(θ) increases as temperature decreases

−→ Criticality always reached at equator first
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Critical angular velocity at the ΩΓ-limit

The condition giving the critical angular velocity Ωc is :

ΓΩ(π/2) =
κ(π/2)L

4πcGM

(

1−
Ω2

cR
3
eq

GM

)

−2/3

= 1

which gives

Ω2
c
= Ω2

k

[

1− Γ3/2max

]

,

where

Γmax = Γ(π/2) =
κ(π/2)L

4πcGM

is the standard Eddington parameter.

−→ Ωc is reduced with increasing Γ
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The effects of rotation on stellar winds



The effects of rotation on stellar winds

The interaction of mass loss and rotation is manifold :

• Latitudinal dependence of mass loss for a given rotation

• Change of the global mass loss with rotation

• Anisotropic mass loss induces anisotropic loss of angular momentum

• Anisotropic mass loss may contribute to the driving or damping of

meridional circulation
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Local mass and angular momentum fluxes

Local mass-flux :

ṁ(θ) =
α

vth(θ)c

(

k

1 + α

)1/α′
[

c

κe(1− α)

(

geff(θ)−
κeF (θ)

c

)]

α
′
−1

α
′

F 1/α′

(θ)

• α′ = α− δ

• α, k, δ : force multiplier parameters, depend on Teff

• vth thermal velocity (usually vth = vth(H))

• κe : electron scattering opacity

−→ Anisotropic mass loss, favoured polar ejection at first glance

Local loss of angular momentum :

ℓ̇(θ) = ṁ(θ)Ω(θ)R2(θ) sin2(θ)
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Bi-stability jumps

• T
jump
eff : effective temperature at which Fe IV → Fe III which has a

stronger line acceleration in the lower wind

• When ∃Teff(eq) < T
jump
eff < Teff(pole), Ṁ increases in the

equatorial region
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The effects of rotation on stellar winds
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• SWR : mass loss favoured in polar regions → low AM loss

• TWR : bi-stability limit is crossed, mass loss favoured between θjump

and the equator → significant loss of AM
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Conclusion



The effects of rotation on stellar winds

• von Zeipel theorem should not be used to seek conditions for critical

rotation

• ω-model in agreement with 2D ESTER models & observations

• Unique critical angular velocity at the ΩΓ-limit

• Ωc decreases with increasing Γ

• Rotation induces anisotropic mass loss and angular momentum

loss

• SWR : mass-flux favoured in polar regions & low angular

momentum loss

• TWR : mass-flux favoured in equatorial region & high angular

momentum loss

• Anisotropy & rotation-induced bi-stability jump effects on the

wind are crucial to appreciate dynamical evolution of massive stars
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Questions?

14


	Introduction
	Critical angular velocity at the -limit
	The effects of rotation on stellar winds
	Conclusion

