Corrélation entre structures et propriétés électroniques dans les agrégats de PAH

Une équipe interdisciplinaire française impliquant des laboratoires toulousains (IRAP, LCPQ) et de la région parisienne (Synchrotron SOLEIL, ISMO) ont combiné la mesure de spectres de photo-ionisation au synchrotron SOLEIL avec des simulations moléculaires et ont pu établir la corrélation entre structures et propriétés électroniques (ionisation) d’agrégats de molécules polycycliques aromatiques hydrogénées (PAH) en phase gazeuse. La connaissance de ces structures va permettre de mieux caractériser les propriétés de ces agrégats en particulier leur spectroscopie et leur stabilité afin d’avancer dans notre compréhension du rôle de ces systèmes dans la chimie des régions de formation d’étoiles ainsi que dans les flammes.

Des premières mesures expérimentales de spectres de photoélectrons d’agrégats de PAH à base de pyrène C16H10 et de coronène C24H12 ont été obtenues en utilisant la technique d’imagerie de photoélectrons-photoions en coïncidence disponible sur la ligne de photons ultraviolet lointain (VUV) DESIRS à SOLEIL. Ces données ont été confrontées aux résultats de simulations moléculaires dans lesquelles les effets de structure et de température ont été pris en compte. Pour un agrégat de typiquement 6 molécules un certain nombre d’isomères peuvent être peuplés à des températures de 100-200K. La qualité de l’accord expériences/simulations a permis de valider l’approche théorique utilisée. Les structures d’agrégats obtenues sont composées d’empilements multiples au-delà de typiquement 4 monomères. Un résultat important a été de montrer que, lors de l’ionisation, la charge ne se répartit pas sur l’ensemble de l’agrégat mais reste localisée sur quelques unités moléculaires (1 à 3). Ce comportement va affecter les propriétés électroniques et la stabilité de ces systèmes.

Evolution de l’énergie d’ionisation avec la taille des agrégats de pyrène (C16H10). Les valeurs expérimentales (courbe noire) sont comparées aux résultats des simulations moléculaires (courbes en couleur). Le potentiel d’ionisation vertical (courbe verte) a été calculé pour les isomères de plus basse énergie représentés ici pour 5, 6 et 7 molécules. Dans ces structures, les molécules en vert sont celles qui portent la charge lors de l’ionisation. A température finie, typiquement 100-200 K dans l’expérience, il faut tenir compte dans les simulations du peuplement thermique des différents isomères, ce qui permet d’obtenir les courbes rouges et bleues en très bon accord avec la courbe expérimentale.

Dans les milieux astrophysiques, les PAH sont produits par destruction de très petits grains carbonés sous l’effet des photons VUV. Les travaux présentés ici constituent une première étape de l’étude de ce processus, les agrégats de PAH étant considérés comme des systèmes modèles en laboratoire de ces très petits grains carbonés cosmiques. Les propriétés d’ionisation des agrégats de PAH (énergie d’ionisation relativement basse et forte section efficace d’ionisation) impliquent que ces espèces seraient en grande partie ionisées dans les milieux où les PAH sont formés. Leurs propriétés d’évaporation vont donc différer par rapport à celles des agrégats neutres qui ont été jusqu’à présent considérés dans les modèles astrophysiques.

Ce travail interdisciplinaire (CNRS-INSU/INP/INC) a été initié dans le cadre du projet ANR Gas-phase PAH research for the interstellar medium (GASPARIM, ANR-10- BLAN-0501) et a mis également en jeu des moyens du projet ERC Synergy NANOCOSMOS.

Ressources complémentaires

Contact IRAP

  • Christine Joblin, IRAP (CNRS/Université Paul Sabatier-Toulouse III)
    christine.joblinSPAMFILTER@irap.omp.eu, 05 61 55 86 01

Plus d'actualités

Vénus perd de l’oxygène et du carbone dans l’espace

Vénus, contrairement à la Terre, ne possède pas de champ magnétique intrinsèque. En conséquence, le vent solaire interagit directement avec son atmosphère, accélérant des particules chargées qui peuvent s’échapper dans […]

MIRS : départ pour le Japon

MIRS, petit instrument d’une dizaine de kilos seulement, est un véritable bijou de technologie mis au point en seulement 4 ans. Développé collectivement par le CNES, le LESIA, le LAB, […]

Jupiter et Saturne: un nouveau modèle théorique des magnétosphères géantes

Les planètes géantes du Système Solaire sont des systèmes d’une extrême complexité. Elles sont caractérisées d’abord par leur champ magnétique très intense, qui crée une cavité magnétique protectrice du vent […]

Rechercher