IRAP > Observations > Laboratory experiments > Planetology experimental platform

Observations

Planetology experimental platform

The Planetology experimental platform was created at the same time as IRAP, on January the 1st, 2011. It includes a variety of laboratory experiments that can recreate the conditions encountered at the surface and inside the rock bodies of the solar system. As a whole, this instrumental park provides a better understanding of the physical and chemical processes that form and shape the planetary objects.

The topics covered are numerous, including in particular the study of chemical interactions between metals and silicates at high pressure and high temperature during the formation of planetary cores, strain and viscosity of the minerals of the planetary coats, the kinetics of nucleation and crystal growth from volcanic fluids, chemical interactions water-gas-rock that lead to the mineralogical alteration, and the light-matter interaction necessary for the interpretation of the spectroscopic data issued from space exploration. Within the group “ Géophysique Planétaire et Plasmas Spatiaux”, testing complements other approaches which study the planetary functioning (petrology / mineralogy / geochemistry of natural samples, seismology, numerical modeling of geodynamics, using data from space exploration ...).

Beyond the existing experience, several development projects are underway, especially an enclosure which reproduces the conditions on the surface of Venus and the establishment of a high-pressure module capable of reaching pressures close to the boundary core-coat on Mars.

In addition, the testing of high and low temperatures can also deal with issues of socio-economic interest, and several areas of research are developed in collaboration with industrial partners (EDF, CEA, BRGM ....) on topics such as the nuclear cycle (secondary circuit of the EPR, vitrification of waste, geological disposal).

expeplaneto2_medium

Four à atmosphère contrôlée (Tmax = 1600 °C, PO2 variable) permettant l'étude des mécanisme de ségrégation métal-silicate dans les planétésimaux

expeplaneto4

Boîte à gants anoxique et réacteurs hydrothermaux pour l'étude des interactions eau-roche gaz en atmosphère contrôlée

Participants

Major equipment available

  • Frédéric Béjina (CR CNRS)
  • Gilles Berger (DR CNRS)
  • Misha Bystricky (MC UPS)
  • Alexandre Corgne (CR CNRS)
  • Yves Daydoux (IR CNRS)
  • Sébastien Fabre (PRAG UT2)
  • Patrick Pinet (DR CNRS)
  • Michael Toplis (DR CNRS)
  • Julien Baticle (doctorant)
  • Jérémy Guignard (doctorant)
  • Audrey Souchon (doctorante)
  • IE CNRS en cours de recrutement
  • Annealing furnaces (1 atm.)
  • Centrifugal four
  • High-frequency four
  • Controlled atmosphere furnaces
  • Piston-cylinder press
  • Creep Machine (controlled atm.)
  • Hydrothermal reactors
  • Anoxic glove box
  • Spectral imager

In addition to the experiments installed within the platform, we have access to several synchrotron sources (ESRF, NSLS) which lead to experiments of mineralogical deformation and transformation under high pressure and high temperature. These experiments are carried out in D-DIA press and in diamond anvil cells.

expeplaneto3_medium

Machine de fluage avec four à atmosphère contrôlée (Tmax = 1600°C) pour l’étude des mécanismes de déformation des roches.

expeplaneto1_medium

Presse piston-cylindre simulant les conditions de pression et température de l’intérieur des planètes (Pmax= 30 000 bar, Tmax = 2500 °C)

expeplaneto5_medium

Imageur spectral pour l’étude des propriétés optiques des surfaces planétaires.

A few recent publications

  • Berger G., Aigouy T. (2011) Experimental rocks alteration under venus-like conditions. Lunar and Planetary Science Conference XXXXII, Abstract #1660, Houston, TX, march 7-11
  • Boulard E., Gloter A., Corgne A., Antonangeli D., Auzende A.L., Perrillat J.P., Guyot F., Fiquet G. (2011) New host for carbon in the deep Earth. Proceedings of the National Academy of Sciences of the USA
  • Guignard J., Bystricky M., Bejina F. (2011) Dense fine-grained aggregates prepared by Spark Plasma Sintering (SPS), an original technique in experimental petrology. European Journal of Mineralogy, in press
  • Siebert J., Corgne A., Ryerson F.J. (2011) Systematics of metal-silicate partitioning for many siderophile elements applied to Earth's core formation. Geochimica et Cosmochimica Acta 75: 1451-1489
  • Souchon A.L., Pinet P.C., Chevrel S.D., Daydou Y.H., Baratoux D., Kurita K., Shepard M.K., Helfenstein P. (2011) An experimental study of Hapke’s modeling of natural granular surface samples. Icarus, in press
  • Chopinet M.H., Gouillart E., Papin S., Toplis M.J. (2010) Influence of limestone grain size on glass homogeneity. Glass Technology 51: 116-122
  • Fiquet G., Auzende A.L., Siebert J., Corgne A., Bureau H., Ozawa H., Garbarino G. (2010) Melting of Peridotite to 140 Gigapascals. Science 329: 1516-1518
  • Mansour C., Berger G., Fédoroff M., Lefèvre G., Pages A., Pavageau E.M., Catalette H., Zanna S. (2010) Influence of temperature and reducing conditions on the sorption of sulfate on magnetite. Journal of Colloid and Interface Science 352: 476-482
  • Bejina F., Sautter V., Jaoul O .(2009) Cooling rate of chondrules in ordinary chondrites revisited by a new geospeedometer based on the compensation rule. Physics of the Earth and Planetary Interiors 172: 5-12
  • Pupier E., Duchêne S., Toplis M.J. (2008) Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid. Contributions to Mineralogy and Petrology 155: 555-570

Links

The platform is directly involved in three of the six areas of research of the group "Géophysique Planétaire et Plasmas Spatiaux".
The following links provide access to a detailed presentation of these three topics:

Afficher le pied de page